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Abstract

A phasing algorithm is presented for combining multiple
wavelength anomalous dispersion (MAD) data from
multiple types of anomalous scatterers, either in the
same or in different derivative crystals, as well as for
combining MAD data with multiple isomorphous
replacement (MIR) data from different derivative crys-
tals. A heavy-atom phasing and refinement program
originally written by Rossmann [(1967) HATOMLSQ
program, Purdue University, West Lafayette, Indiana,
USA] has been modified to refine the parameters that
define the anomalous and isomorphous scatterers and to
determine protein phases by using all MAD and MIR
derivatives simultaneously. The technique allows for
appropriate weighting of every data set, including the
native data, which contains neither an anomalous nor an
isomorphous component. This method is a generalization
of currently used heavy-atom methods. Numerical tests
are presented for different experimental scenarios,
including a double MAD experiment on the same crystal
(diffraction data at two absorption edges), combination of
two MAD experiments on different crystals, and
combination of MAD data with MIR data from multiple
crystals. An appendix shows how the Karle equations
used in MAD phasing can be reformulated as a particular
case of this algorithm.

1. Introduction

The Harker diagram (Harker, 1956) is the direct or
implied basis for all methods used to determine and
refine phases with isomorphous or anomalous dispersion
data. Blow & Crick (1959) suggested a general method
for treating error in such phase determination. A sim-
plification of the error treatment was given by Dickerson,
Kendrew & Strandberg (1961), which also served to
popularize the procedure. This assumes that there is no
error in the native structure amplitudes and that all the
error is contained in the parameters that describe the
heavy-atom or anomalous scatterers, as well as in the
amplitudes of the isomorphous or anomalous diffraction
data. Furthermore, the method requires a knowledge of
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the native structure amplitude if a phase has to be
determined. Hence, the frequent practice is, when using
popular programs such MLPHARE (Otwinowski, 1991)
for the refinement of anomalous phases, to treat one of
the available data sets (usually the one with the smaller
Bijvoet differences) as the native data set with no error.
Cullis, Muirhead, Perutz, Rossmann & North (1961)
presented an alternative geometrical construction of the
Harker diagram which allowed for equivalent treatment
of all isomorphous data sets. We present here the Cullis
et al. (1961) technique adapted to the simultaneous
refinement of isomorphous and anomalous dispersion
data and show its relationship to the solution of the Karle
equations (Karle, 1980), often used for the interpretation
of multiple wavelength anomalous dispersion (MAD)
data.

The genesis of the work described here originates with
our attempts to solve the crystal structure of the first two
domains of intercellular adhesion molecule-1 (Kolatkar,
Oliveira et al., 1992) using the MAD phasing method in
a poorly substituted single-site selenomethionyl deriva-
tive.

2. Description of the phasing method

2.1. The phasing method of Blow & Crick (1959) and
Dickerson et al. (1961)

If Fpy; and Fy; are the complex structure factors of the
ith isomorphous heavy-atom derivative and its respective
heavy-atom constellation, and if Fp is the corresponding
unsubstituted parent (native) structure factor, then

Foy; = Fp + Fy,.
From this it follows (Harker, 1956) that

Fhy = F} + Fiy + 2FpFy; cos(y, — o), (1)

where ; is the phase of Fy; and « the phase of Fp. Fpy;,
Fy, and Fp are the respective amplitudes of the derivative,
heavy-atom, and protein structure factors. If the positions
of the heavy atoms in the unit cell are known, Fy; can be
calculated and then « can be determined using (1).
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Every derivative equation has two possible solutions
for «, which correspond to two equally probable protein
phase angles. In an error-free situation, there will be a
unique common solution for all the derivatives, which in
the Argand diagram will result in all circles from protein
and derivatives intersecting at the same point. In an
experimental situation, however, several types of errors
concur, and the different circles do not intersect exactly.
This is the case represented in Fig. 1. Every pair parent-
ith derivative will produce a solution Fp; = Fpexp ic;,
which will be close to, but not exactly the same as, the
Fp; solution from the jth derivative. Thus, some uncer-
tainty as to the correct value of the protein phase remains.
The simplest estimate of @ would be an average between
all the calculated «,’s. The most common approach (Blow
& Crick, 1959; Dickerson et al., 1961) involves the
calculation of the right-hand side of (1) at regular inter-
vals of ¢, using the experimental values of Fp and cal-
culated values for Fy; and ¥;, and then comparing the
result with the experimental value of Fpy;, where

ga) = Fpy; — [Fg + Fl?{i + 2FpFyy; cos(y; — 0‘)]”2- (2)

Here £;(e) is the calculated lack-of-closure error between
the parent and the ith derivative when the parent phase
angle has a value of «. The smaller the lack-of-closure
error, the higher is the probability that the protein phase
angle is correct.

The probability P,(«) of the protein phase angle having
a value of «, as determined from the ith derivative, can be
evaluated by assuming a Gaussian error distribution for
&) (Blow & Crick, 1959; Dickerson et al., 1961) such
that

—&3(a)
2E?

P,(@) o exp 3)
where E; is the estimated standard error of the e/(«)
distribution. The joined probability can then be calcu-
lated as the product of the individual probabilities from
every derivative (Rossmann & Blow, 1961), where

N N 2
Pe) =[] Pfe) = K exp [ - zgj;?]. @
i=1 i=1 i

K is a normalization factor that ensures that the sum of
probabilities for all possible « values is equal to 1, and N
is the number of heavy-atom derivatives.

The usual Dickerson et al. (1961) phase determination
assumes that all errors accumulate on the experimental
quantities Fpy;, without regard for any error in the
measured Fp amplitudes or the parameters that determine
Fyy:. Indeed, it is usually assumed that Fy; can be para-
metrized by spherically symmetrical atoms, which is
certainly not the case in the event of any loss of iso-
morphism. Nevertheless, Blow & Crick (1959) showed
that, to a good approximation, errors in Fp and Fpy; may
be treated as a single error. They also showed that errors
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in Fy,; can be convoluted with the error in Fp and Fpy;,
thus demonstrating that, to a reasonable approximation,
all errors could be considered to reside in Fpy;.

2.2. The Cullis et al. (1961) method

In this method, all Fpy; and Fp observations are treated
in an equivalent manner, implicitly assuming the exis-
tence of errors in all sets of amplitudes. It was first used
by Cullis er al. (1961) for the phase determination of
horse oxy-hemoglobin at 5.5 A resolution.

First, circles of radii Fpy; are drawn for every deriva-
tive, including the measured native, as shown in Fig. 1.
Then, the amplitude of the native structure factor is cal-
culated for every derivative and phase angle, «, as the
length of a radius vector of slope tan« that intercepts the
circle of radius Fpy, (Fig. 2). Analytically, Fp,(«) can be
expressed as

Fpla) = — Fy; cos(¥; — )

. (5)
+ [Fryy; ~ Fiy sin*(¥; — )%,

Next, the mean value of these native structure-factor
amplitudes, (Fp()), is calculated at every phase angle «,

1 N
(Fp(a)) = Nrl Z Fpia), ©6)
=0

where the measured native structure factor is treated as
one more circle of radius Fp, centered at the coordinate
origin, so that Fya = 0. N + 1 is the total number of
circles used for phase determination, from N derivative
and one native (if present) measurements.

The most probable phase is the one that gives the
minimum variance of the mean value (F},(«)), that is, the
intersections of the different circles with the radius vector
of phase o are minimally spread. The probability func-
tion at every value of « is calculated by

—[(Fp(e)) — FPi(Of)]2

P(@) = exp = ,

(M

and the joined probability as the product of the individual
probabilities,

P@)=Kexp} - % [(Fp(@)) — Fp (@ } ®)
=0 !

The double sign in (5) comes from the double intersec-
tion of a circle of radius Fpy; with a straight line of slope
tana (Fig. 3). It is easy to demonstrate that, for those
cases where one solution of Fp; is positive and the other
negative, the positive solution corresponds to a phase of
a and the negative solution corresponds to a phase of
m + a. Some special situations arise (Cullis et al., 1961)
when both solutions are of the same sign or when the
discriminant in (5) is negative. Such cases are described
in Appendix A.
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2.3. Multiple wavelength anomalous dispersion

The MAD formalism that is commonly applied to
biological macromolecules was initially developed by
Karle (1980), and later modified by Hendrickson (1985,
1991; reviewed in Smith, 1991). It can be shown that, if
only one type of anomalous scatterer is present,

AFiH‘ _op 4 G+ LY opil_
Cry?
2M
+ TfOFPHiOFHi cos(Capyy, — "Yrg)  (9)
22 .
+ ? OFPIIiOFHi sin(’apy, — OWH.)~

where *Fpy; is the experimentally observed structure-
factor amplitude of the ith derivative, collected at wave-
length A, including any anomalous diffraction contribu-
tion; “Fpyy, is the amplitude of the normal structure factor
of the same derivative (that is, excluding anomalous
diffraction effects and therefore independent of the
wavelength); °Fy, is the amplitude of the normal struc-
ture factor from the constellation of anomalous scatterers;
and OapH, and Oi,lfH, are the phases of their respective
structure factors. The + sign in the last term is dependent
on whether the data for F(hkl) or F(hkl) is being con-
sidered. In this way, each Friedel mate at each wavelength
provides one of a set of simultaneous equations.

This formalism separates the non-anomalous, wave-
length independent, quantities from the wavelength-
dependent anomalous ones. The only wavelength infor-
mation in equation (9) is contained in the coefficients *;
and *f;’, which can be obtained with reasonable approx-
imation from theoretical calculations (Cromer & Liber-
man, 1970), or determined in situ experimentally from
X-ray fluorescence measurements on the crystal to be
diffracted (Hendrickson, Smith, Phizackerley & Merritt,
1988). The *Fpy; amplitudes are experimentally mea-
sured quantities, and the only unknown parameters are
Fpui Fui and (Copy; — “Yy). In general, two Karle
equations (9) can be written for each wavelength corre-
sponding to the two Friedel opposites. Hence, error-free
data at two different wavelengths should be more than
sufficient to solve the equations. In practice, three or four
data sets are typically used to overdetermine the problem,
and the unknown quantities are derived for every
reflection by a least-squares fit to the multiple measure-
ments (Hendrickson, 1985).

The °Fy, values derived in this way can be used to
locate the angmalous scatterers by calculating a Patterson
map with °F>, coefficients. Knowing the positions of the
anomalous scatterers permits calculation of %, and then
Oapy; for each reflection. The calculated values of OFPH,
and ‘apyy; are then used to compute an electron-density
map of the protein plus the non-anomalous contribution
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of the anomalous scatterers. Equation (9) applies to the
case when only one type of anomalous scatterer is pre-
sent in the crystal. If more scatterer types are present, two
additional unknowns are required for each new type, and
the number of terms in equation (9) increases to
(n + 1)?, where n is the number of anomalous scatterer
types (Karle, 1980; Hendrickson, 1985). The Karle
equations (9) cannot be applied simultaneously to two or
more MAD data sets collected on isomorphous crystals,
each with a different anomalous scatterer type. In such
cases, the equations must be solved separately for each
crystal, and then the phases can be averaged externally.

The treatment described so far is the basis for the
algebraic formalism developed by Hendrickson and
coworkers in their program MADLSQ (Hendrickson,
1985; Hendrickson et al., 1988). An alternative that has
become popular in recent years (Ramakrishnan & Biou,
1997), treats multiwavelength data as arising from a
conventional multiple isomorphous replacement (MIR)
experiment with the inclusion of anomalous scattering
(North, 1965; Matthews, 1966). This approach was used
by Sweet and coworkers in their determination of the
structure of the globular domain of histone H5 by MAD
phasing (Ramakrishnan, Finch, Graziano, Lee & Sweet,
1993). In this procedure, diffraction data from one
wavelength — A1 for example — are treated as a ‘native’
data set that has observable Bijvoet differences. Data
collected at the other wavelengths are treated as deriva-
tives, where the isomorphous differences arise from the
dispersive terms f — £} and the Bijvoet differences result
from anomalous terms /. Thus, the real and imaginary
parts of the atomic structure factors for the jth wave-
length are f/ — f; and f;", respectively (Ramakrishnan
& Biou, 1997).

Heavy-atom refinement and phasing is then carried out
with an MIR refinement program, typically MLPHARE,
which uses a maximum-likelihood algorithm (Otwi-
nowski, 1991). The need for using the data from one
wavelength as a native data set imposes limitations on the
MIR treatment, in that it does not permit usage of mul-
tiple anomalous scattering species in the same crystal,
nor multiple wavelength data collected on different
crystals. Terwilliger (1994) has proposed a variation of
the MIR treatment of dispersive differences that allows
for combination of more than one multiwavelength data
set. His method involves the approximation that the
magnitude of the structure factor corresponding to the
anomalous scattering atoms is small compared with that
from all other atoms in the structure (Terwilliger, 1994).

The Cullis et al. (1961) method described in this paper
allows for simultaneous handling of multiple MAD data
sets, each from a different constellation of anomalous or
isomorphous atoms, in a very straightforward way and
with no approximations (Fig. 4). Each Friedel mate from
every wavelength and from every derivative can con-
tribute — if the measurement is available — to the phase
diagram. The general expression for the derivative
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structure factor is
A A
Fopi = Fp + "Fy

_FP+Z(1+Af"‘i A;’“)OFWH,

where the i subscript identifies the derivative, A the
wavelength and the double sign the Friedel dependence.
*Fy; is the overall heavy-atom structure factor and
includes contributions from all the heavy-atom sites,
denoted by the & subscript. °Fy; is the normal dlffractlon
contribution from the kth heavy-atom site, *f,; and *f},
the anomalous atomic scattering factors, and °f%; the
normal atomic scattering factor. In general, any heavy-
atom site is treated as a potential anomalous scatterer site.
If *,; and *f;;" are zero, the site corresponds to a normal
(non-anomalous), isomorphous scatterer. Different types
of anomalous scatterers can be present in the same
derivative, or some of the heavy-atom sites may show
anomalous scattering whereas others do not. Some of the
‘heavy atoms’ might be S or Se atoms in the protein if
these had been previously located. Every equation (10)
corresponds to two circles (one for each Friedel opposite)
that can be used in the phase determination as shown in
Figs. 1 and 2. MAD, MIR and native data can be readily
added to the Argand diagram by calculating the proper
Fa, i and i values (all of them zero for the
measured native data).

*Fp{c) are determined by the intersections of the cir-
cles obtained from (10) with the radius vector of phase «.
Equation (5) can be rewritten as

(10)

"Fp(a) = = *Fy; cos(*yy; — )
A2 2 2/ 1/2 (1)
£ [ Fpyyy — *Fyyy sin® (g, — ]2

Mean amplitudes (Fp(ar)) are then calculated using (6),
individual phase probabilities using (7), and combined
phase probabilities using (8). As previously defined, the
most probable phases and amplitudes are obtained from
the value of & that gives a minimum in the variance of
(Fp(a)}. Under this formulation, there is no need to treat
the data from one particular wavelength as ‘native’, and
both amplitude and phase estimates are obtained for an
average native structure factor.

This procedure requires the previous knowledge of the
positions of the anomalous scatterers in the unit cell, so
that the respective *Fy; vectors can be calculated for
every derivative, wavelength and hand. Anomalous
scatterers can be located from an anomalous Patterson
map (Rossmann, 1961), which uses [F(hkl) — F(hkl)]* as
coefficients. Alternatively, simultaneous Karle equations
can be solved for each ith derivative, multiwavelength
data set, to calculate °Fy; and then to produce an °F f,,
Patterson map (see Appendix B). Finally, normal iso-
morphous scatterers have to be identified by conventional
Patterson or Fourier isomorphous difference methods.
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In most MIR phasing algorithms, centric reflections
receive special consideration as their phase is limited to
only two possible values (0 or 7 if the projected center of
symmetry is at the origin). Thus, the probability P(a) of
o being the phase of Fp must be zero for all non-allowed
values of «, although, in the presence of anomalous
dispersion, the phases of the different Fpyy; are not subject
to such a restriction.

3. Least-squares refinement of the heavy-atom
parameters

The isomorphous or anomalous atomic parameters can
be refined by minimizing

—~
' —
=

Wil (Fpa(@max)) — F) Phi(amax)]z

H N
3
H M L, (12)
= Z Z Z Z Whm;\r[ FPh(amax))
h m

A T
- FP.hmAr(amax)] .

The sum is extended to all H unique reflections, repre-
sented by the 4 index, and all N derivatives, represented
by the i index. Every derivative can be described in terms
of three indices: compound, m = 1,..., M; wavelengths of
the mth compound, A = 1,..., L,,; and Friedel mate, 7 = 1
or 2, where a specific value of m, A and 7 defines one
circle in the Argand diagram. Every term in (12) is
multiplied by a weight w;,, = wy,,. calculated from the
standard measurement error in each reflection.
(Fpp(omay)) and Fp,(a,..) are, respectively, the mean
native protein amplitude and the calculated native protein
amplitude for each derivative, both at the most probable
value for the protein phase a,,,,. If only two circles are
available for a given reflection, then the centroid of the
probability-weighted phase distribution, ey, is used
instead.

The refinable parameters are the atomic positions for
each heavy-atom and anomalous scatterer, their occu-
pancy factor and their temperature factor. If anomalous
diffraction is included, then the anomalous scattering
factors */” and *f” can also be refined for every type of
anomalous scatterer. Furthermore, since several data sets
need to be scaled together prior to any phase determi-
nation, additional refinement of the scaling parameters
may be needed.

The ‘observed’ quantities (Fp,(c,,,)) in (12) are, in
fact, dependent on the parameters. Thus, equation (12)
can be rewritten as

(13)

where

i = Frp(@mar) = (Fpy(@ng))- (14
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Equation (13) becomes a normal residual function in
which every known value is zero, and the absolute
minimum in absence of error will be reached when all
terms ((Fp;) — Fp,)” are also zero. In practice that does
not happen, and a normal least-squares procedure is
defined, where the normal equations are,

J

Z Z S 3Dy, 00,

hi k
y dg g,
d<b
=3 Y,
T -

There are as many equations (15) as there are refinable
parameters {; (j = 1,...,J). The solutions of the system of
equations are the parameter shifts A¢;. The derivatives of
®,; can be easily derived from equations (6) and (14) as,

(15)

9, IF, <th>
M k(R (16)
a e\,
where
th> 1 &LoF,
Iy =—) & 17)
< a | N Z ag; (

N, is the overall number of derivative circles in which the
phase determination of the Ath reflection is based, as
some of the observations from different derivatives,
wavelengths or Friedel opposites may not be usable for
that particular reflection.

The Cullis et al. (1961) phasing method has been
implemented into the heavy-atom phasing and refinement
program HATOMLSQ (Rossmann, 1967), which has
been extensively modified to handle multiwavelength
data. The new program, WHALESQ (Wavelength-Heavy-
Atom-LEast-SQuares) has a least-squares procedure as
described above. The program can also apply non-crys-
tallographic symmetry constraints where appropriate to
the refinement of the heavy-atom parameters (Rossmann,
1976).

Several numerical tests have been run to verify that the
program produces reliable phase information from data
with simulated measurement errors and moderate non-
isomorphism effects. In all these tests, individual and
joined probability distributions have been calculated
using equations (7) and (8), where the standard errors E;
have been estimated in a simple way as the root-mean-
square of &, calculated in resolution shells from all the
reflections from the same compound and wavelength.
Amplitudes and phases for the ‘best’ electron-density
map have been calculated for each reflection at the cen-
troid of the probability distribution,

ﬁf” P(a) exp(ia)der

Foeq = (Fp) .
T 2 playda

= (FP>m exp(iabest)'

(18)
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where m is usually referred to as ‘figure of merit’.

The program also calculates two additional quantities
analogous to those used in lack-of-closure-based MIR
methods,

1/2

H 2
Z Z q:)hmu
R,,(Cullis) = T (19)
Z Y 2 Fotpmr — (Fpu))
and
H 2 172
Z Z Flglhm)\r
K ;. (Phasing power) = /: > (20)
Zh: Z ¢Iz*lhm}t‘r

Sums in equations (19) and (20) are extended to all the
reflections, overall and in resolution shells. Both R,,, and
K. are calculated for every compound and every
wavelength used in the phase determination, and can be
useful to monitor the quality of the heavy-atom con-
tribution. Typically, bad derivatives show values of R,,,
around 1.0 and K,,, close to zero. ]

Despite the simplicity in the error treatment, WHA-
LESQ has produced satisfactory results on several
numerical tests as described below, with average values
of the figures of merit in pretty good agreement with the
cosines of the mean phase errors. The phasing method is
general enough to allow for several improvements, like
more accurate treatments of the propagation of errors into
the protein phase angles, as described by Terwilliger &
Eisenberg (1987), or implementation of maximum-like-
lihood algorithms into the refinement of the heavy-atom
parameters (Otwinowski, 1991). These and other
improvements will be introduced in future versions of the
program. The source code for the program is available
from the authors.

4. Numerical tests

We have analyzed the performance of the phasing algo-
rithm described above in four numerical tests, repre-
senting different experimental situations. The first test, a
single MAD experiment, is intended to assess the accu-
racy of the phases obtained with this method and to
compare them with those obtained using widely used
phasing programs like MLPHARE (Otwinowski, 1991).
The second test shows how the presence of two types of
anomalous scatterers in the same crystal can be exploited
for phasing purposes in a very straightforward way. The
third test explores the possibility of using MAD data
from two different crystals, each one with a different type
of anomalous scatterer, to improve the phases with
respect to those obtained from each MAD data set
separately. The impact of non-isomorphism between the
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Table 1. Anomalous scattering factors and diffraction ratios

Diffraction ratios are calculated as follows. Diagonal terms: Y_,,, |F(hkl) — Fl (hkD)|/ 3w (F(hkD)) (centric data in parentheses). Off-diagonal terms:

> wu NE(hkd) — YF(RKD|/ 3 {F (RAD)).

(a) Anomalous scattering factors for the Fe K absorption edge, and diffraction ratios from error-free data used in the first numerical test (resolution

range 25.0-2.5 A)

Scattering factors (e7)

A (B) 7 £ 1.8000
1.8000 ~3.17 0.50 03
1.7402 -8.97 248

1.7380 ~6.49 5.19

1.6500 -2.18 3.56

1.5000 ~0.95 3.05

Diffraction ratios (%)

(b) Diffraction ratios (%) from data with simulated error (resolution range 25.0-3.0 A)

(A 1.8000 1.7402
1.8000 3.8 (3.5) 44
1.7402 4.1 3.5)
1.7380

1.6500

1.5000

two crystals is analyzed there. The fourth test explores
the possibility of phasing using multiple data sets origi-
nating from different derivatives and wavelengths in a
combined MAD and MIR approach.

For all these tests, we have calculated different sets of
structure factors from a known protein structure with
known heavy-atom positions. We have introduced non-
isomorphous errors when combining simulated data from
different crystals. To make the tests more realistic, we
have simulated measurement errors for the structure-
factor amplitudes as a function of resolution (4ppendix
(). In multiple crystal tests, these measurement errors
have been introduced on top of the non-isomorphous
errors. The protein model is the crystal structure of the
homotetrameric hemoglobin from Urechis caupo
(Kolatkar, Ernst et al., 1992). This hemoglobin contains
141 amino-acid residues plus one heme group per
monomer, and the crystal contains two monomers per
asymmetric unit. The structure was solved initially to 5 A
using MIR methods (Kolatkar, Meador, Stanfield &
Hackert, 1988), and its phases were refined to 2.5 A
using MAD data (Kolatkar, Ernst et al., 1992). Atomic
coordinates of the structure are available from the Protein
Data Bank (entry code 1ITH).

4.1. First numerical test: a single MAD experiment

Atomic coordinates from protein and heme groups
were used in the calculation of structure-factor ampli-
tudes. Anomalous dispersion effects were introduced for
the Fe atoms at five diffraction wavelengths around the Fe
K absorption edge at 1.740 A. The values of /" and f” at

A (A)

1.7402 1.7380 1.6500 1.5000
2.3 1.9 1.0 1.2
1.5 1.3 2.6 3.0

3.1 1.7 22
2.1 0.5
1.8
A (A)
1.7380 1.6500 1.5000
4.2 3.9 4.0
4.0 4.5 4.7
49 (34 4.2 4.3
4.4 (3.6) 38
42 (3.3)

each wavelength were obtained from Hendrickson et al.
(1988). Table 1(a) shows the calculated anomalous signal
for the five simulated wavelengths used in this test,
assuming an error-free situation. The diffraction ratios for
the data with simulated error (Table 1b) are larger than
the calculated anomalous signal, and in the same range as
those observed in the real experiments reported by
Hendrickson et al. (1988) and Kolatkar, Emnst et al.
(1992). Diagonal terms in parentheses relate to the dif-
ferences between Friedel mates of centric reflections as a
consequence of the simulated error, and give a measure
of the noise level introduced in the data.

Data with simulated error were used in WHALESQ to
calculate phases and amplitudes for the native structure
factors Fp. Each reflection was represented by ten circles,
two for each wavelength, with a phase angle interval of
5°. For centric reflections, the structure-factor amplitudes
of any two Friedel mates are the same (radii of the cir-
cles), but the centers of the circles still are different for
each Friedel mate. The R factor in Table 2 is an index of
the agreement between the mean (Fp) of the estimated
Fyp; amplitudes and the error-free Fp values. In this
experiment, the native structure included all protein plus
non-metal heme atoms, whereas the two Fe sites were
considered heavy atoms. It can be seen that the estimates
of Fp are very good. The mean phase error, Ax, was
calculated from the differences between the centroid
phases and the actual phases of the parent structure
factors. Table 2 and Fig. S compare the mean phase error
with the arc cosine of m, the mean figure of merit, which
should be the expected value of the cosine of the mean
phase error. The m values — normally available in an
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Table 2. Phasing statistics from the first numerical test,
using amplitudes greater than lo(F) and within the
resolution range 25.0-3.0 A

For comparison, statistics are shown from two MLPHARE calculations,
each using a different wavelength as ‘native’ data set.

Overall Centric Acentric
WHALESQ
R factort 0.030 0.018 0.033
Aat 412 313 429
cos™ 'mi§ 449 44.1 45.1
Number of reflections 6622 965 5657
MLPHARE
A5 as native
Aw 44.6 34.2 46.4
cos™ i 84.1 79.8 84.8
Number of reflections 6594 953 5641
A1 as native
Aa 44.3 37.1 45.5
cos ' 85.8 84.3 86.0
Number of reflections 6591 950 5641

T R factor = 3, [(Fp) — Fpl/ 3 4u Fy, where Fp is the error-free
native structure factor and (Fy) is the mean native structure factor as
defined in the text. 1 Aa is the mean phase error between the

estimated phase and its true value.  § cos™ ' is the cosine of the
mean figure of merit.

actual experiment — agree reasonably well with Ao —
available in this test but normally unknown in an actual
experiment.

For comparison, phases were also calculated with
MLPHARE using the MIR analysis of the dispersive
differences (Ramakrishnan & Biou, 1997). Data selection
criteria were the same for both programs. The data from
the remote wavelength (1.5) were used as ‘native’ in first
instance, and then phases were redetermined using the
‘pre-edge’ wavelength A1 as native (see Hendrickson er
al., 1988, for details about the actual positioning of the
different wavelengths in the absorption spectrum curve
around the Fe K edge). Overall, MLPHARE phases
between 25 and 3 A were slightly worse than those cal-
culated from WHALESQ, independently of the ‘native’
wavelength choice (Table 2). The MLPHARE figures of
merit are seriously underestimated, overall and by reso-
lution ranges (Fig. 5), and seem to depend on which
wavelength is used as a ‘native’.

The differences in the number of reflections used for
phasing statistics in Table 2 arise from the lo(F) cutoff
applied. This highlights another potential disadvantage of
‘native’-based MAD phasing methods. For a given
reflection, the structure-factor amplitude at the wave-
length chosen as ‘native’ can be unobserved or rejected
on grounds of o-based cutoffs. This may result in
reflections being inaccurately phased or not phased at all.
Instead, WHALESQ can reject a poor observation by
applying o-cutoffs, and still determine the phase as
accurately as the remaining well determined observations
allow. In this numerical test, the total number of unique
reflections between 25.0 and 3.0 A is 6660. Table 2
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statistics are based on the reflections surviving the 1o(F)
cutoff. For WHALESQ, those include any reflection for
which there are at least any two observations (circles)
greater than lo(F). For MLPHARE, reflections are
included only when ‘native’ and at least one more
wavelength observations are greater than lo(F).

4.2. Second numerical test: a double MAD experiment
with perfect isomorphism

In this numerical test, two different types of anomalous
scatterers are present simultaneously in the same crystal.
The heavy-atom derivatives of the hemoglobin crystals
(Kolatkar, Emst et al., 1992) are real-life examples for
this case. A selenomethionyl-protein crystal soaked in
one heavy-atom solution, or an unmodified protein
crystal soaked in two different heavy-atom solutions,

: Fl'll:

Fig. 1. Argand diagram of the determination of unknown phases from a
protein crystal structure using multiple isomorphous derivatives
(Harker, 1956). Throughout this paper we will adopt a different
convention from what is normally used. In this convention, protein
structure factors Fp (red) are vectors that radiate from the origin of
coordinates, with amplitude Fp and phase «; heavy-atom structure
factors Fyy; (blue for i = 1, black for i = 2) are represented by vectors
of amplitudes Fyy; and phases yr,, that start at (—Fycosyr, —Fysiny)
and end at the origin of coordinates; derivative structure factors are
represented by vectors beginning at the origin of their respective
heavy-atom vectors and finishing at the end of the protein structure
factor vectors, such that Fpy; = Fyy; + Fp. Possible solutions for the
protein complex structure factor Fp; are given by the intersections
between the circle of radius Fp centered at the ongin and the
derivative circles of radii Fpy, centered at their respective Fyy; origins.
In absence of any error, all circles should intersect at only one point,
which would give the correct solution for F,. In practice, every
derivative circle may intersect with the native circle in a different
position or may not even intersect at all.
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would also fit into this category. The experiment simu-
lated here consisted of the measurement of anomalous
diffraction data at the absorption edge of each anomalous
scatterer. In this simulation, we chose a platinum deri-
vative from Kolatkar, Emst et al. (1992) (third derivative
on Table 1 from that reference), and kept the occupancies
of the two Pt sites at the levels experimentally deter-
mined: 0.14 and 0.17, respectively. Structure-factor
amplitudes were calculated at six different wavelengths,
three around the Fe K edge and three around the Pt Ly
edge at 1.072 A. The f” and f” values for platinum at the
Ly edge were estimated from X-ray absorption spectra
experimentally measured (unpublished data). Anomalous
scattering factors for Pt at the Fe K edge and for Fe at the
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Pt Ly, edge were calculated theoretically (Cromer, 1983).
The diffraction ratios show that the signal from the Pt Ly,
edge data is quite weak (Table 3).

Phases were determined using WHALESQ in a two-
derivative approach. The first ‘derivative’ set consisted of
the simulated data for the three wavelengths of the Fe K
edge. The second ‘derivative’ consisted of the simulated
data for the three wavelengths of the Pt Ly; edge. Each
‘derivative’ contained two Fe and two Pt atoms, and their
anomalous scattering factors corresponded to the parti-
cular wavelength in use. Thus, a total of 12 circles were
used for phase determination. Overall, inclusion of
anomalous dispersion data from a low-occupancy sec-
ondary anomalous scatterer (Pt) improved the accuracy

Fig. 2. The protein structure factor Fp
is calculated from each derivative
at each sampled value of the phase
angle o (every 20° in this exam-

L2 ple). The most probable phase

angle is that which gives the

minimum  spread  (vanance)
between the calculated amplitudes

Fp;. The enlarged area shows the

way in which the different Fy,

values are calculated at the inter-
sections between the respective
circles and straight lines with slope
tane. Different Fp; solutions are
shown as triangles, squares or
diamonds, respectively. The native
circle is treated as another deriva-

tive (Fpy in this figure) that has a

null heavy-atom vector. The best

estimate for the protein amplitude
is calculated as the average (Fp)
between all the calculated Fp,.

Thus, protein phases and ampli-

tudes can be straightforwardly

determined from any three deriva-
tive circles, even in the absence of
any protein native data. The color
scheme for native and derivatives
is the same as in Fig. 1.



JORDI BELLA AND MICHAEL G. ROSSMANN

167

Table 3. Anomalous scattering factors and diffraction ratios for the Fe K and Pt Ly absorption edge data used in the
second numerical test

Resolution range: 25.0-3.0 A. Definitions as in Table 1.

Scattering factors (e”)

Diffraction ratios (%)

A (A)

Fe Pt Fe Fe Fe Pt Pt Pt
A (A) b i ¥ i i £ 17420 1.7380 1.5000 1.0720 1.0714 0.9800
1.7402 —-897 248 477 838 4.1(34) 40 48 5.1 5.0 5.1
1.7380 649 519 -477 838 50(3.6) 44 4.8 4.7 47
1.5000 —0.95 3.07 -5.39 6.64 4.3 (34) 4.1 4.0 39
1.0720 0.18 1.7 =25.12 10.20 4.1(3.5) 39 3.9
1.0714 0.18 1.75 —17.56 14.26 42(34) 3.9
0.9800 0.25 1.50 -8.26 8.74 4.0(3.4)

Table 4. Phasing statistics from the second numerical test

Phases calculated with WHALESQ using amplitudes greater than lo(F)
and within the resolution range 25.0-3.0 A. Definitions as in Table 2.

Overall Centric Acentric
R factor 0.033 0.018 0.036
Aa 33.6 19.9 359
cos”'m 39.0 325 40.0
Number of reflections 6628 970 5658

of the phases obtained from the high-occupancy main
anomalous scatterer (Fe) (Table 4).

In practice, it is not uncommon to prepare derivatives
of protein crystals already containing one potential
anomalous scatterer. Thus, in theory it would be possible
to perform real experiments like the one described above

Fp(n+ o)

Fig. 3. Origin of the double solution of equation (5) for a particular
derivative. The positive solution in this case corresponds to the
calculated F;, when the phase angle is @. The negative solution
corresponds to minus the calculated Fp when the phase angle is
7+ a. As in Fig. 1, native is shown in red.

and collect anomalous data from the same crystal at two
different absorption edges. ensuring perfect isomorph-
ism. However, the arbitrary choice of hand used to define
the anomalous scatterer constellation must be reconciled
with the absolute (right) hand chosen to index the
reflections (Blow & Rossmann, 1961).

Fig. 4. Treatment of MAD data by the method described in this paper.
The size of the anomalous effects has been exaggerated for clarity.
The contribution of every kind of anomalous scatterer is calculated
independently for every ith compound, A wavelength and Friedel
mate, as if it were an independent derivative. Circles of radii *F,(+)
represent experimentally observed amplitudes. Dashed circles of
radii °F, correspond to derivative structure-factor amplitudes in
absence of anomalous scattering effects. No native circle is present in
this example. The common intersection of all circles gives the phase
and amplitude of the protein structure factor, F,, which includes the
contribution of all atoms in the asymmetric unit except the
anomalous scatterers. In this way, several MAD data sets can be
reduced to the same native protein structure factor. The color scheme
1s as in Fig. 1.
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Table 5. Anomalous scattering factors and diffraction rations (%) for the Pt Ly;; and Au Ly absorption edge data used
in the third numerical test

Resolution range: 25.0-3.5 A. Definitions as in Table 1.

Scattering factors (e7)

Diffraction ratios (%)

A (A)

Pt Au Pt Pt Pt Au Au Au
x (A) A ' A /7 1.0720 1.0714 0.9800 1.0402 1.0390 0.9500
1.0720 -25.12 10.20 4.0 (3.6) 3.7 4.0 11.7 11.9 12.2
1.0714 —-17.57 14.26 42 (3.4) 38 12.0 12.1 124
0.9800 —-8.26 8.74 3934 12.3 12.5 12.8
1.0402 —25.04 10.20 38@3.3) 38 3.9
1.0390 -16.43 1425 4137 38
0.9500 -8.17 8.71 39@3.6)

4.3. Third numerical test: a two-crystal, two-MAD
experiment

In this test, we explored the possibilities of combining
MAD data from two different crystals, each having a
different anomalous scattering species. The accuracy of
the combined phase determination will depend heavily
on the degree of isomorphism between the two crystals.
Two heavy-atom derivatives were chosen for this simu-
lation, one containing two Pt sites and the other con-
taining a single Au site (third and fifth derivatives in
Table 1 from Kolatkar, Ernst ez al., 1992). To enhance the
anomalous signal, occupancies of these sites were
increased to 0.30, 0.30 and 0.33, respectively. Data were
simulated at the Pt L;; and Au Ly; absorption edges,
respectively, and Fe atoms were considered ‘non-anom-
alous’ in all the calculations. Non-isomorphism between
the two derivatives was modeled by changing the unit-
cell dimensions of the Au derivative (a was increased by
0.2%, b and ¢ were decreased by 0.2%); by translating
each molecule in the reference asymmetric unit by

0.84

0.6
cos (3a)

. —O— WHALESQ

~ —>— MLPHARE 15

© ~—— MLPHARL A}

cos {Aat)
‘ v . 31

024

T

130 88 67 54 45 30

Resolution limits (A)

Fig. 5. Vanation with resolution of the cosine of the mean phase error,
cos(Aa), and average figure of merit, 7, in the first numerical test.
Phases were calculated with WHALESQ (diamonds) and MLPHARE
(triangles). A5 or A1 indicate which wavelength was used as native in
MLPHARE phase determinations.

0.10 A inx, —0.05 A iny, —0.10 A in z; and by rotating
each molecule by 0.5° around the z axis. The size of the
non-isomorphous errors can be estimated from the R
factors between the two crystals (Table 5). Anomalous
scattering factors for Pt and Au were theoretically
determined or, when possible, estimated from actual
X-ray absorption spectra.

The phase improvement obtained by combining two
MAD data sets was evaluated by calculating phases with
WHALESQ using (a) data from the Pt derivative alone
(six circles), (b) data from the Au derivative alone (six
circles), and (c) data from both derivatives together (12
circles). Phasing statistics for the three cases at different
resolution intervals are shown in Table 6. At low reso-
lution, there was a significant improvement in phasing
accuracy when combining the Pt and Au data, compared
with the phases obtained by using each of them sepa-
rately. At higher resolution, the overall improvement
decreased, and when extended to 3.5 A resolution, phases
calculated using both derivatives were worse than those
based on the Pt derivative alone. The decrease of phase
improvement with resolution (Table 6 and Fig. 6) is the

0.8+

0.6

cos (aa)

0.4

—0— R
0.24 —— Au

—4— P+ Au

6.9 55 4?5 4T0

Resolution limits (A)

35

Fig. 6. Variation with resolution of the cosine of the mean phase error,
cos (Aa), for the third numerical test, using the Pt Ly dala alone
(squares), the Au Ly data alone (triangles), or both Pt Ly and Au Ly
data sets combined (diamonds).
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Table 6. Phasing statistics from the third numerical test

Phases calculated with WHALESQ using amplitudes greater than 1o(F) and within the resolution range 25.0-3.5 A. Definitions as in Table 2.

Resolution (A) 25.0-5.5
Overall Centric Acentric Overall
R factor
Pt only 0.036 0.029 0.038 0.039
Au only 0.034 0.029 0.036 0.034
Pt + Au 0.041 0,043 0.040 0.062
Aa
Pt only 49.7 458 509 57.3
Au only 51.8 50.3 522 60.6
Pt + Au 41.2 36.5 2.7 574
cos” '
Pt only 50.1 54.0 48.8 56.8
Au only 51.2 52.8 50.7 61.4
Pt + Au 335 25.2 359 42.0
Number of reflections
Pt only 1119 271 848 1370
Au only 1110 265 845 1362
Pt + Au 1124 276 848 1374

consequence of the increasing importance of non-iso-
morphous errors with resolution.

Overall, figures of merit matched reasonably well with
the accuracy of the phases when single derivatives were
considered for phasing. When phasing with two deriva-
tives, however, figures of merit were overestimated (Table
6). The increase in the number of circles introduces a
sharpening in the probability distribution and, hence,
improves the calculated m. However, because of non-
isomorphous errors, this increase in the number of circles
does not correspond with the actual increase in phase
accuracy, and as a result the calculated figures of merit
are higher than they should be. This discrepancy
becomes worse as the resolution of the data increases and
the non-isomorphous errors become more important. The
Fp amplitudes are still estimated reasonably well,
although it seems that combining derivatives results in a
small increase in the mean amplitude errors.

Calculation of the phasing power for each derivative as
a function of resolution gave some indication of whether
the phase accuracy was improved by combination of the
two MAD data sets. At a resolution higher than 4.6 A,
the phasing power of the Au data dropped to 1.0-1.2 for
the three wavelengths when used in combination with the
Pt data, suggesting that their phasing contribution was
too small compared to the increasing effect of non-iso-
morphous errors.

Combining real experimental MAD data from two or
more different crystals can be beneficial in those cases
where the phases obtained from every MAD experiment
independently are poor, so that the impact of non-iso-
morphism errors is compensated by the phase improve-
ment upon combination. If one of the MAD data sets is
able to produce accurate phases on its own, then the
introduction of a second MAD data set will only improve

5542 4.2-35

Centric Acentric Overall Centric Acentric
0.034 0.040 0.047 0.040 0.048
0.034 0.034 0.039 0.039 0.038
0.086 0.057 0.074 0.084 0.073
56.5 574 53.1 474 539
569 61.3 62.7 62.5 62.7
56.5 57.5 588 544 59.4
60.8 56.0 545 579 54.0
66.4 60.4 64.2 71.0 63.2
329 436 40.4 342 41.2
220 1150 1721 207 1514
215 1147 1714 206 1508
223 1151 1724 210 1514

F [

PH Loy,

Fig. 7. Examples of special cases when Fy is larger than Fpy. At the
phase angle «, the radius vector intersects the circle of radius Fpy
(blue) in two points, giving two possible solutions for the protein
structure factor: Fp(a,) (red) and Fpy(a,) (green). The same will be
true for any « angle between two limiting values o, and agh,
defined by the two tangent lines from the coordinate origin to the
circle of radius Fpy. At the phase angle o, there is no intersection
between the radius vector and the circle of radius Fpy. An
approximate solution for the protein structure factor can be obtaned
as the vector Fp(er;) (gold), which is drawn from the origin of
coordinates to the point where the radius vector intercepts the
perpendicular drawn from the center of the derivative circle.
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the phases if there is good isomorphism between the two
crystals. Comparison of R(Cullis), phasing power K, and
figures of merit at different resolution shells and using
various combinations of data sets should generally show
the resolution limits of useful combination of phase
information.

4.4. Fourth numerical test: MAD and MIR phase
combination

In this test, we combined MIR and MAD data sets into
the same Harker diagram. The simulated experimental
data consisted of two collections of structure-factor data
sets. The first set contained data from a native crystal and
from four low-occupancy derivatives. This set yielded
MIR phases of low quality. The second set consisted of
MAD data at three wavelengths from a fifth derivative,
and was simulated so that the combination of measure-
ment errors and low occupancy of the only anomalous
scatterer also produced poor phases when used alone.

All the derivative parameters were taken from Table 1
in Kolatkar, Ernst ef al. (1992). The MIR data included a
native, designated as Nat; two platinum derivatives, Pt(1)
and Pt(2); and two mercury derivatives, Hg(1) and Hg(2),
with heavy-atom occupancies and coordinates taken from
the original reference. The MAD data, Au (34), was
simulated for the gold derivative at three wavelengths
around the Au Ly; edge. The occupancy, atomic coordi-
nates, wavelengths and anomalous structure factors for
this derivative were the same as used in the third
numerical test (Table 5). All crystals were modeled with
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Table 7. R factors (%) between different derivatives used
in the fourth numerical test

Values in parentheses correspond to noise-free data. Resolution range:
25.0-35 A. Ry = Xy |F/(hkl) = Fj(hk)|/ ¥y (F(RKD)).

Native  Hg(l) Hg(2) Pt (1) Pt (2)

Au (A2) 10.9 9.9 16.6 9.4 12.0
(10.5) 9.1) (16.3) (8.6) (11.3)

Native 16.5 15.2 15.0 7.2
(16.1) (14.7) (14.6) (6.2)

Hg (1) 21.7 Tid 17.7
(21.4) (6.7) (17.3)

Hg (2) 21.6 153
(21.2) (14.8)

Pt (1) 15.7
(15.3)

some degree of non-isomorphism, in a similar way to that
described for the third numerical test, and then the
resulting structure-factor amplitudes were modified with
a simulated measurement error. R factors between the
different data sets, with or without simulated noise, give
an idea of the effect of the different errors (Table 7).
The MIR phases from the first set of data (native,
platinum and mercury derivatives) were calculated using
WHALESQ, with a mean phase error of 61" for data
between 25.0 and 3.5 A resolution. The overall figure of
merit calculated with WHALESQ was 0.428, which
agreed well with the mean phase error (cos™ ') = 65°.
For comparison, MLPHARE was used to calculate phases
from exactly the same data. The mean phase error was

62°, with an overall figure of merit of 0.243 (cos™'m =

*Fpy(=) e
“I"pH ‘--I"V"

ouPH,.. o wH

Fig. 8. Geometric relationships between the different complex structure factors resulting from a derivative with anomalous scatterers (left). Vectors
in red and black are obtained exclusively from normal diffraction effects and are independent of the wavelength. Vectors in blue are wavelength-
dependent and result from anomalous diffraction effects. *f (green) is the anomalous scattering vector of real component */*/f and imaginary
component */"/'f (see text). Rotation of the complex plane by minus the phase of “Fy; results in this vector being aligned with the origin of the

phase angles (right).
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767). Again, WHALESQ phases were on average a little
bit better, and the calculated figures of merit were much
closer to the cosine of the mean phase error. It appears
that MLPHARE’s figures of merit are too pessimistic.

WHALESQ phases calculated using only the three Au
(3A) data sets, in a single MAD experiment, were also
poor, with a 60° mean phase error. Again, the calculated
figure-of-merit calculation, 0.505, agreed with the cal-
culated phase error (cos™ ' = 60°).

Table 8 shows how the phase accuracy can be
increased by combination of different subsets of the data
described above. The biggest improvement came from
combining all the data in the phase determination [MIR +
Au (31)], with a mean phase error of 40° and calculated
figure of merit of 0.727 (cos™ 'm = 43°). Several inter-
mediate tests were calculated in which the MAD data
were combined with different derivatives with various
degrees of isomorphism (Table 8). For example, the
combination of the three Au (31) data sets with just one
platinum derivative (one extra circle) produced a clear
improvement in the phase accuracy, which was bigger
with the more isomorphous Pt(1) data set than with the
less 1somorphous Pt(2) data set. On the other hand,
combination of the MAD Au (3A) data with the least
isomorphous derivative, Hg(2), actually decreased the
phase accuracy.

Introduction of the native data into the phase deter-
mination, in what would be like a MAD + SIR combi-
nation, improved the phase accuracy both in the high-
isomorphous case [Aug (31), Pt(1) and Nat] and in the
low-isomorphous case [Au (31), Hg(2) and Nat]. How-
ever, in this latest case the MAD Au (3A) data still did
better on their own. Combination of the two least iso-
morphous derivatives [Pt(2) and Hg(2)] with the Au (31)
data sets produced better phases than the MAD phases
alone, but again the Hg(2) data did more harm than good.
Phases were better if only the Pt(2) data were combined
with the MAD Au (31) data.

Inspection of the phasing power for the different
derivatives could help to identify Hg(2) as a potentially
bad derivative. X[Pt(1)] for example, ranged from 0.8 to
1.6 on the different tests, [Pt(2)] was 0.6-0.7, K[Hg(1)]
varied from 0.4 to 0.7, and K[Hg(2)] was always below
0.3.

5. Conclusions

The procedure described here avoids approximations and
treats all data equally. This allows for the simultaneous
phasing and refinement of MAD data from different
anomalous scatterers. Numerical tests verify the proce-
dure and show the results on combining phase informa-
tion from multiple heavy-atom, anomalously diffracting,
isomorphous derivatives. Particularly useful is the pos-
sibility of combining MIR and MAD data when the
MAD signal is weak and isomorphism is poor. The two
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Table 8. Mean phase error (°) from different combina-
tions of data used in the fourth numerical test

MIR: all single-wavelength derivatives in Table 7 plus the native; Au
(34): three-wavelength Au data set; Hg(1), Hg(2), Pt(1) and Pt(2): single
derivatives; Nat: native data. Only amplitudes greater than la(F) have
been used. Resolution range: 25.0-3.5 A. Definitions as in Table 2.

Au cos 'm
MIR 60.8 64.7
Au (31) 60.4 59.7
MIR + Au (31) 40.0 434
Au (31) + Pt(2) 55.1 513
Au (33) + P(1) 49.4 46.0
Au (3x) + Py(1) + Hg(l) 46.5 423
Au (3A) + Pt(1) + Nat 443 472
Au (32) + Hg(2) 633 57.0
Au (31) + Hg(2) + Nat 61.2 52.5
Au (31) + Hg(2) + Pt(2) 584 509

indices R(Cullis) and K(phasing power) have been found
to be useful to identify bad derivatives or resolution
ranges in which poor isomorphism is deleterious rather
than helpful. This method is currently being applied in
our laboratory to the structure determination of inter-
cellular adhesion molecule-1.

APPENDIX A
Special cases

Special cases occur when solving equation (5): the two
solutions can be of the same sign, or the discriminant can
be negative so that there is no solution at all. These
special cases result from the amplitude of the heavy-atom
vector, Fyy;, being larger than the amplitude of its cor-
responding derivative structure factor, Fpy, (Fig. 7).

If the discriminant is negative, that s
F2y — F2,sin’ (¢, — @) < 0, then the following approx-
imation is used (Cullis et al., 1961),

Fpi(a) >~ —Fy; cos(y; — a),

which is represented in geometrical form in Fig. 7.

Cases with two positive solutions are solved in an
iterative way. First, the most positive solution is chosen
and an initial (Fp(ar)) is calculated. Subsequently, the
ambiguity between the two solutions is solved by
choosing the one closest to the previous (Fp()), and a
new average is calculated. This procedure is repeated
until convergence is achieved. If a phase angle o results
in an equation (5) with two negative solutions, the angle
m + a will produce two positive solutions.

APPENDIX B
Graphical solution of the Karle equations

The Karle equations can be derived as a special case of
the formalism discussed in this paper when there is only
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one derivative with anomalous data measured at multiple
wavelengths. For simplicity, all anomalous scatterers will
be considered from the same type. For a given Friedel
pair we have,

‘Fou(+) = Fp + *Fy
:FP+°FH(1+2§+%§—”) (21)
=y + °F, M,
and

"Fpu(=) = Fp + 'Fjy = Fpy + "F 1", (22)
where “Fpy = Fp + °Fy and *f = (f/°) +i(*f"/°f),
(Fig. 8).

Fp is the protein structure factor, *Fy; is the overall
diffraction contribution from the heavy-atom constella-
tion at wavelength A, °Fy is the normal diffraction con-
tribution from the heavy atoms, °Fpy; is the normal
diffraction contribution from protein and heavy atoms,
and *Fpy(+) are the overall structure factors whose
amplitudes are experimentally measured. *F}; and *f* are
complex conjugates of *Fy and *f.

Now, we rotate the complex plane by multiplyin§ both

sides of the equation (21) by exp(—iolij), where "y is
the phase of °Fy (Fig. 8),
*Fpu(+) exp(—*¥y) = "Fpy exp(—*¥y)
+ °F,*fexp(—®yy),
or, in exponential form
*Fou(+) explil* apy(+) — "¥ryg]}
= "Fpy expliCapy — "¥y)) @3)

o (kf;)Z + (/\f//)z
+ Pyl ——
f)
*api(+), “apy and *£ are phases of *Fpy(+), “Fpy and *f,
respectively. Equation (22) is treated in an identical
manner to obtain an equation (23) for the hkl measure-
ments, with *Fpy(—=), *opuy(—), and —*& instead of
)‘FPH(+)3 AaPH(+)’ and /\S'
From equation (23) it follows that
(kf/)Z + ()\f//)2 OF,Z
+t—F%,7  ‘n
)
O+ ] 29
Cry
x cos(+*& + Yy — "opy).

1/2
] exp(i*£).

*Fon(E) = "Fiy

+ 2OFPHOFH[

Equation (24) is equivalent to equation (1), but with
three unknowns: °Fpyy, °Fy; and (Papy — %Ygy). Since there
are two equations per wavelength, one for each Friedel
pair, two wavelengths are enough in an error-free situa-
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tion to determine all the parameters. Every observation
provides a circle of radius *Fpy(+) with a heavy-atom
vector °Fy*f or °Fi*f*, of variable length and fixed
phase. The same scale °Fy applies to all heavy-atom
vectors. The solution in an Argand diagram is given by
the intersection of all circles at the same point. Fig. 9
shows how to solve graphically the simultaneous equa-
tions arising from two wavelengths. The phase angle
(Capy — ®Yy) is sampled from 0 to 360°, and °Fyy is the
scale factor that multiplies all the heavy-atom vectors.
Only the correct values for (“apy — ¥yy) and °Fy bring
the four circles to intersect at one point. This intersection
gives the correct amplitude °Fpy.

In practice, more than two wavelengths are needed to
overcome the experimental errors, and the best estimates
of °Fy, °Fpy and (Papyy — ®Yyy) are obtained by mini-
mizing the spread of (°Fpg) as described in the main text.

It can be shown that every equation (24) is formally
equivalent to a Karle equation (9) by substituting into
(24) the angular relation

cos( £ & + "y — Porpy)
= COS(OapH - OWH) Cos(isx)

+ sin(Capy — *¥yy) sin(££,)

to obtain
() = "y + %ﬁkﬁ% h
+ %_,OFPHOFH cosCapy — ¥y)
+ 2:;" OFpyy Fyy sin(opyy — “yyp)-
APPENDIX C

Error simulation

Errors in the structure-factor amplitudes have been
simulated as follows. First, a given structure-factor
amplitude is calculated in its exact form F,.. Then, a
sample of 100 ‘observed’ structure factors is generated
as,

Foei = (AF e +BY1 +Cs?) i=1,...,100, (25)
where

1
A, =1+ T[ran(i, 1) — 5],

and
. 1
B, = Ty[ran(i, 2) — E].
Measurement errors are simulated via 4;, and are

proportional to the size of F,; B; simulates background
fluctuation errors, independent of the size of F,.; 7; and
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T, are adjustable target parameters that govern the size of
the introduced errors; and ran(i,1) and ran(i,2) are two
independent series of randomly generated numbers uni-
formly distributed between 0 and 1. The (1 + Cs?) factor
in (25) introduces a resolution dependence on the errors,
where s is the length of the reciprocal lattice vector and C
an adjustable parameter. For the numerical examples used
in this paper, the typical values of the three adjustable
parameters have been 0.08-0.16 for 7', 200-300 for 75
and 5 A? for C.

After the sample of 100 *measurements’ is generated,
the ‘observed’ amplitude used in the numerical tests is

173

calculated as the average of a subset of ten observations
from the population

1
(F‘*"“)zﬁzlzp"""" i=nn+10,n+20,....n+90.

where the first value of the series, n, is chosen randomly
from 1 to 10. The ‘standard deviation’ of the ‘observed’
amplitude is determined from the entire population,

1 Joo ) 12
0 (Fops) = [m‘d Z:(Fohs‘r' = Feue) ] :
i=l

Fig. 9. Solving the Karle equations by
Argand diagrams. The heavy-atom

| vectors are "Fy*f and "Fy*f*, and
| are represented as ending at the
origin of coordinates (see caption

to Fig. 1). The experimentally
observed amplitudes are repre-
sented as circles of radii *Fpu(+)
and *Fpy(—) centered at the ori-

| gins of their respective heavy-atom
vectors. Three vignettes illustrate

the effect of "Fy; as scaling factor

in this two-wavelength example.
Heavy-atom vectors in (a) are too
short, and every given pair of

circles intersects at two different
points (the two red circles in fact
do not intersect). Still, by evaluat-

ing the spread between the differ-
ent circles at every phase angle, it
is possible to find an approximate
solution ("Fpy), as shown by the
dashed vector. Heavy-atom vectors
in (b) are of the correct size and all
four circles intersect in a unique
g:int corresponding to the correct

pu solution (phase and ampli-
tude). The correct scale of the
heavy-atom vectors gives the right
value for "Fyy. In (), heavy-atom
vectors are too long and there is no
longer a unique intersection. The
dashed vector indicates the
approximate solution obtained at
the minimum spread of the four
circles. The approximate solutions
in both (a) and (c) are close to the
correct value, which indicates that
9Fy can be refined if its initial
value is not very far from the
correct one. The data from the two

different wavelengths are shown in
red and blue.
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