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Abstract 

A phasing algorithm is presented for combining multiple 
wavelength anomalous dispersion (MAD) data from 
multiple types of anomalous scatterers, either in the 
same or in different derivative crystals, as well as for 
combining MAD data with multiple isomorphous 
replacement (MIR) data from different derivative crys- 
tals. A heavy-atom phasing and refinement program 
originally written by Rossmann [(1967) HATOMLSQ 
program, Purdue University, West Lafayette, Indiana, 
USA] has been modified to refine the parameters that 
define the anomalous and isomorphous scatterers and to 
determine protein phases by using all MAD and MIR 
derivatives simultaneously. The technique allows for 
appropriate weighting of every data set, including the 
native data, which contains neither an anomalous nor an 
isomorphous component. This method is a generalization 
of currently used heavy-atom methods. Numerical tests 
are presented for different experimental scenarios, 
including a double MAD experiment on the same crystal 
(diffraction data at two absorption edges), combination of 
two MAD experiments on different crystals, and 
combination of MAD data with MIR data from multiple 
crystals. An appendix shows how the Karle equations 
used in MAD phasing can be reformulated as a particular 
case of this algorithm. 

1. Introduction 

The Harker diagram (Harker, 1956) is the direct or 
implied basis for all methods used to determine and 
refine phases with isomorphous or anomalous dispersion 
data. Blow & Crick (1959) suggested a general method 
for treating error in such phase determination. A sim- 
plification of the error treatment was given by Dickerson, 
Kendrew & Strandberg (1961), which also served to 
popularize the procedure. This assumes that there is no 
error in the native structure amplitudes and that all the 
error is contained in the parameters that describe the 
heavy-atom or anomalous scatterers, as well as in the 
amplitudes of the isomorphous or anomalous diffraction 
data. Furthermore, the method requires a knowledge of 
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the native structure amplitude if a phase has to be 
determined. Hence, the frequent practice is, when using 
popular programs such MLPHARE (Otwinowski, 1991) 
for the refinement of anomalous phases, to treat one of 
the available data sets (usually the one with the smaller 
Bijvoet differences) as the native data set with no error. 
Cullis, Muirhead, Perutz, Rossmann & North (1961) 
presented an alternative geometrical construction of the 
Harker diagram which allowed for equivalent treatment 
of all isomorphous data sets. We present here the Cullis 
et al. (1961) technique adapted to the simultaneous 
refinement of isomorphous and anomalous dispersion 
data and show its relationship to the solution of the Karle 
equations (Karle, 1980), often used for the interpretation 
of multiple wavelength anomalous dispersion (MAD) 
data. 

The genesis of the work described here originates with 
our attempts to solve the crystal structure of the first two 
domains of intercellular adhesion molecule-1 (Kolatkar, 
Oliveira et al., 1992) using the MAD phasing method in 
a poorly substituted single-site selenomethionyl deriva- 
tive. 

2. Description of the phasing method 

2.1. The phasing method of  Blow & Crick (1959) and 
Dickerson et al. (1961) 

If FpHi and FH/are the complex structure factors of the 
ith isomorphous heavy-atom derivative and its respective 
heavy-atom constellation, and if Fr, is the corresponding 
unsubstituted parent (native) structure factor, then 

FpH i = Fp  -Jr- FHi.  

From this it follows (Harker, 1956) that 

FzH, = F 2 + F 2, + 2FpFH; cos(~i-or) ,  (1) 

where ~i is the phase of FHi and ot the phase of Fp. Fr, Hi, 
FH~ and Fp are the respective amplitudes of the derivative, 
heavy-atom, and protein structure factors. If the positions 
of the heavy atoms in the unit cell are known, FH; can be 
calculated and then c~ can be determined using (1). 

Acta C~stallographica Section D 
ISSN 0907-4449 (~: 1998 



160 PHASING ALGORITHM FOR MAD AND MIR 

Every derivative equation has two possible solutions 
for u, which correspond to two equally probable protein 
phase angles. In an error-free situation, there will be a 
unique common solution for all the derivatives, which in 
the Argand diagram will result in all circles from protein 
and derivatives intersecting at the same point. In an 
experimental situation, however, several types of errors 
concur, and the different circles do not intersect exactly. 
This is the case represented in Fig. 1. Every pair parent- 
ith derivative will produce a solution Fp; = Fp exp ict~, 
which will be close to, but not exactly the same as, the 
Fl,j solution from the j th derivative. Thus, some uncer- 
tainty as to the correct value of the protein phase remains. 
The simplest estimate of c~ would be an average between 
all the calculated ot,.'s. The most common approach (Blow 
& Crick, 1959; Dickerson et al., 1961) involves the 
calculation of the right-hand side of (1) at regular inter- 
vals of ct, using the experimental values of Fp and cal- 
culated values for FH, and ~p;, and then comparing the 
result with the experimental value of Fpu,, where 

Ei(og ) = FpH i --[F2p + F2Hi + 2FpFHiCOS(~ , -c t ) ]  1/2. (2) 

Here ei(u) is the calculated lack-of-closure error between 
the parent and the ith derivative when the parent phase 
angle has a value of  c~. The smaller the lack-of-closure 
error, the higher is the probability that the protein phase 
angle is correct. 

The probability P,{ot) of  the protein phase angle having 
a value of u, as determined from the Rh derivative, can be 
evaluated by assuming a Gaussian error distribution for 
e;(ot) (Blow & Crick, 1959; Dickerson et al., 1961) such 
that 

- ~ ( ~ )  
Pi(cr) o¢ exp 2E 2 , (3) 

where E; is the estimated standard error of  the e~(c0 
distribution. The joined probability can then be calcu- 
lated as the product of the individual probabilities from 
every derivative (Rossmann & Blow, 1961), where 

P(c0 = Pi(oe) = K exp - ~ j .  (4) 
i=1 i=1 

K is a normalization factor that ensures that the sum of 
probabilities for all possible cr values is equal to 1, and N 
is the number of heavy-atom derivatives. 

The usual Dickerson et al. (1961) phase determination 
assumes that all errors accumulate on the experimental 
quantities Fpn~, without regard for any error in the 
measured Fp amplitudes or the parameters that determine 
Fui. Indeed, it is usually assumed that Fr~, can be para- 
metrized by spherically symmetrical atoms, which is 
certainly not the case in the event of any loss of iso- 
morphism. Nevertheless, Blow & Crick (1959) showed 
that, to a good approximation, errors in Fp and FpH~ may 
be treated as a single error. They also showed that errors 

in FHi can be convoluted with the error in Fr, and FpHi, 

thus demonstrating that, to a reasonable approximation, 
all errors could be considered to reside in Fpui. 

2.2. The Cullis et al. (1961) method 

In this method, all FpH i and Fp observations are treated 
in an equivalent manner, implicitly assuming the exis- 
tence of errors in all sets of amplitudes. It was first used 
by Cullis et al. (1961) for the phase determination of 
horse oxy-hemoglobin at 5.5 A resolution. 

First, circles of radii Fan; are drawn for every deriva- 
tive, including the measured native, as shown in Fig. 1. 
Then, the amplitude of the native structure factor is cal- 
culated for every derivative and phase angle, or, as the 
length of a radius vector of slope tan ot that intercepts the 
circle of radius FpHi (Fig. 2). Analytically, Fp/(U) can be 
expressed as 

Fp,(o,) = - F . ,  c o s ( ~ i  - ~)  

+ [F~H; _ F~ i sin2(¢ / _ a)]l/2" (5) 

Next, the mean value of  these native structure-factor 
amplitudes, (Fp(ot)), is calculated at every phase angle a, 

1 u 
(Fp(c0) -- N + 1 Z Fpi(C0' (6) 

i=0 

where the measured native structure factor is treated as 
one more circle of radius Fpo centered at the coordinate 
origin, so that Fno = 0. N + 1 is the total number of 
circles used for phase determination, from N derivative 
and one native (if present) measurements. 

The most probable phase is the one that gives the 
minimum variance of the mean value (Fp(ot)), that is, the 
intersections of the different circles with the radius vector 
of phase a are minimally spread. The probability func- 
tion at every value of at is calculated by 

- [ ( F p ( o O ) -  Fpi(Ot)] 2 
Pi(cr) = exp 2E 2 , (7) 

and the joined probability as the product of  the individual 
probabilities, 

P ( c 0 = K e x p {  - ~ - ' ~  1 ; = 0  } ~ j [ (Fp(o t ) )  - Fpi(a)] 2 . (8) 

The double sign in (5) comes from the double intersec- 
tion of  a circle of radius Fan; with a straight line of  slope 
tan or (Fig. 3). It is easy to demonstrate that, for those 
cases where one solution of Fpi is positive and the other 
negative, the positive solution corresponds to a phase of 
ot and the negative solution corresponds to a phase of 
Jr + c~. Some special situations arise (Cullis et al., 1961) 
when both solutions are of the same sign or when the 
discriminant in (5) is negative. Such cases are described 
in Appendix A. 
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2.3. Multiple wavelength anomalous dispersion 

The MAD formalism that is commonly applied to 
biological macromolecules was initially developed by 
Karle (1980), and later modified by Hendrickson (1985, 
1991; reviewed in Smith, 1991). It can be shown that, if 
only one type of anomalous scatterer is present, 

FpH i = °b~p. i + ir-fii~ 

2 x ~  0 - 0 , -  ,0 
+ 7 /  rpH; rH~ cos~ apH~ - °qzHi) 

2xf/' or- 0,~ 
-4- ~ t, pHi rHi sin(°apHi - °~Hi) ' 

(9) 

where ~'FpHi is the experimentally observed structure- 
factor amplitude of the ith derivative, collected at wave- 
length ~., including any anomalous diffraction contribu- 
tion; °FpH; is the amplitude of the normal structure factor 
of the same derivative (that is, excluding anomalous 
diffraction effects and therefore independent of the 
wavelength); °Fn~ is the amplitude of the normal struc- 
ture factor from the constellation of anomalous scatterers; 
and 0C~pHi and 07ZH, are the phases of their respective 
structure factors. The + sign in the last term is dependent 
on whether the data for F(hkl) or F(hkl) is being con- 
sidered. In this way, each Friedel mate at each wavelength 
provides one of a set of simultaneous equations. 

This formalism separates the non-anomalous, wave- 
length independent, quantities from the wavelength- 
dependent anomalous ones. The only wavelength infor- 
mation in equation (9) is contained in the coefficients xf' 
and z f, ' ,  which can be obtained with reasonable approx- 
imation from theoretical calculations (Cromer & Liber- 
man, 1970), or determined in situ experimentally from 
X-ray fluorescence measurements on the crystal to be 
diffracted (Hendrickson, Smith, Phizackerley & Merritt, 
1988). The XFpH i amplitudes are experimentally mea- 
sured quantities, and the only unknown parameters are 
0FpHi, "Fni and (0Ot tPHi  - -  01/fHi ). In general, two Karle 
equations (9) can be written for each wavelength corre- 
sponding to the two Friedel opposites. Hence, error-free 
data at two different wavelengths should be more than 
sufficient to solve the equations. In practice, three or four 
data sets are typically used to overdetermine the problem, 
and the unknown quantities are derived for every 
reflection by a least-squares fit to the multiple measure- 
ments (Hendrickson, 1985). 

The °FH, values derived in this way can be used to 
locate the anomalous scatterers by calculating a Patterson 
map with °F~i coefficients. Knowing the positions of the 
anomalous scatterers permits calculation of °TzH, and then 
0C~pni for each reflection. The calculated values of °Fpu; 
and °Oepn~ are then used to compute an electron-density 
map of the protein plus the non-anomalous contribution 

of the anomalous scatterers. Equation (9) applies to the 
case when only one type of anomalous scatterer is pre- 
sent in the crystal. If more scatterer types are present, two 
additional unknowns are required for each new type, and 
the number of terms in equation (9) increases to 
(n + 1) 2, where n is the number of anomalous scatterer 
types (Karle, 1980; Hendrickson, 1985). The Karle 
equations (9) cannot be applied simultaneously to two or 
more MAD data sets collected on isomorphous crystals, 
each with a different anomalous scatterer type. In such 
cases, the equations must be solved separately for each 
crystal, and then the phases can be averaged externally. 

The treatment described so far is the basis for the 
algebraic formalism developed by Hendrickson and 
coworkers in their program MADLSQ (Hendrickson, 
1985; Hendrickson et al., 1988). An alternative that has 
become popular in recent years (Ramakrishnan & Biou, 
1997), treats multiwavelength data as arising from a 
conventional multiple isomorphous replacement (MIR) 
experiment with the inclusion of anomalous scattering 
(North, 1965; Matthews, 1966). This approach was used 
by Sweet and coworkers in their determination of the 
structure of the globular domain of histone H5 by MAD 
phasing (Ramakrishnan, Finch, Graziano, Lee & Sweet, 
1993). In this procedure, diffraction data from one 
wavelength - ~. 1 for example - are treated as a 'native' 
data set that has observable Bijvoet differences. Data 
collected at the other wavelengths are treated as deriva- 
tives, where the isomorphous differences arise from the 
dispersive termsff  - f l '  and the Bijvoet differences result 
from anomalous terms if ' .  Thus, the real and imaginary 
parts of the atomic structure factors for the j th wave- 
length are ~ ' -  £ and £;', respectively (Ramakrishnan 
& Biou, 1997). 

Heavy-atom refinement and phasing is then carried out 
with an MIR refinement program, typically MLPHARE, 
which uses a maximum-likelihood algorithm (Otwi- 
nowski, 1991). The need for using the data from one 
wavelength as a native data set imposes limitations on the 
MIR treatment, in that it does not permit usage of mul- 
tiple anomalous scattering species in the same crystal, 
nor multiple wavelength data collected on different 
crystals. Terwilliger (1994) has proposed a variation of 
the MIR treatment of dispersive differences that allows 
for combination of more than one multiwavelength data 
set. His method involves the approximation that the 
magnitude of the structure factor corresponding to the 
anomalous scattering atoms is small compared with that 
from all other atoms in the structure (Terwilliger, 1994). 

The Cullis et al. (1961) method described in this paper 
allows for simultaneous handling of multiple MAD data 
sets, each from a different constellation of anomalous or 
isomorphous atoms, in a very straightforward way and 
with no approximations (Fig. 4). Each Friedel mate from 
every wavelength and from every derivative can con- 
tribute - if the measurement is available - to the phase 
diagram. The general expression for the derivative 
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structure factor is 

; 'FpH i - -  F p  + ~'FHi 

t .~.-tt \ __ Fp + Z 1 + ~f~. + i ra .  ] (10) 
, G % / 

where the i subscript identifies the derivative, k the 
wavelength and the double sign the Friedel dependence. 
XFni is the overall heavy-atom structure factor and 
includes contributions from all the heavy-atom sites, 
denoted by the k subscript. °FH a. is the normal diffraction 
contribution from the kth heavy-atom site, ~f~. and ~r" Yki 
the anomalous atomic scattering factors, and fk,- the 
normal atomic scattering factor. In general, any heavy- 
atom site is treated as a potential anomalous scatterer site. 
If ;fa-' and xy~" are zero, the site corresponds to a normal 
(non-anomalous), isomorphous scatterer. Different types 
of anomalous scatterers can be present in the same 
derivative, or some of the heavy-atom sites may show 
anomalous scattering whereas others do not. Some of the 
'heavy atoms' might be S or Se atoms in the protein if 
these had been previously located. Every equation (10) 
corresponds to two circles (one for each Friedel opposite) 
that can be used in the phase determination as shown in 
Figs. 1 and 2. MAD, MIR and native data can be readily 
added to the Argand diagram by calculating the proper 
°Fnk/, xj~ i' and Xfk,-" values (all of them zero for the 
measured native data). 

xFp,(a) are determined by the intersections of the cir- 
cles obtained from (10) with the radius vector of phase tx. 
Equation (5) can be rewritten as 

ZFpi(a ) = - ZFHi COS( zlpH i - -  ~) 
). 2 

-Jr- [XF2Hi -- FHi sin2( x lpH i - -  0~)] I/2.  
(11) 

Mean amplitudes (Fp(a)) are then calculated using (6), 
individual phase probabilities using (7), and combined 
phase probabilities using (8). As previously defined, the 
most probable phases and amplitudes are obtained from 
the value of o~ that gives a minimum in the variance of 
(Fp(ot)). Under this formulation, there is no need to treat 
the data from one particular wavelength as 'native', and 
both amplitude and phase estimates are obtained for an 
average native structure factor. 

This procedure requires the previous knowledge of the 
positions of the anomalous scatterers in the unit cell, so 
that the respective ~Fn; vectors can be calculated for 
every derivative, wavelength and hand. Anomalous 
scatterers can be located from an anomalous Patterson 
map (Rossmann, 1961), which uses [F(hkl) - F(hkl)] 2 as 
coefficients. Alternatively, simultaneous Karle equations 
can be solved for each ith derivative, multiwavelength 

0 2 data set, to calculate °Fn; and then to produce an FHi 
Patterson map (see Appendix  B). Finally, normal iso- 
morphous scatterers have to be identified by conventional 
Patterson or Fourier isomorphous difference methods. 

In most MIR phasing algorithms, centric reflections 
receive special consideration as their phase is limited to 
only two possible values (0 or n" if the projected center of 
symmetry is at the origin). Thus, the probability P(ot) of 
o~ being the phase of Fp must be zero for all non-allowed 
values of a, although, in the presence of anomalous 
dispersion, the phases of the different FpHz are not subject 
to such a restriction. 

3. Least-squares ref inement of the heavy-atom 
parameters  

The isomorphous or anomalous atomic parameters can 
be refined by minimizing 

H N 

= Z Z Whi[(FPh(o~max)) -- Fphi((Xmax)]2 
h i 
H M Lm 2 

= Z Z E Z Whm~'r[(Fph(Otmax)) 
h m )~ r 

-- Fp,hmk.r(O~max)] 2 . 

(12) 

The sum is extended to all H unique reflections, repre- 
sented by the h index, and all N derivatives, represented 
by the i index. Every derivative can be described in terms 
of three indices: compound, m -- 1,..., M; wavelengths of 
the ruth compound, X = 1,..., Lm; and Friedel mate, z = 1 
or 2, where a specifc value of m, X and r defines one 
circle in the Argand diagram. Every term in (12) is 
multiplied by a weight whi = Whm~ calculated from the 
standard measurement error in each reflection. 
(Fph(C~ma~)) and Fph/(etmax) are, respectively, the mean 
native protein amplitude and the calculated native protein 
amplitude for each derivative, both at the most probable 
value for the protein phase ama x. If only two circles are 
available for a given reflection, then the centroid of the 
probability-weighted phase distribution, O~best, is used 
instead. 

The refinable parameters are the atomic positions for 
each heavy-atom and anomalous scatterer, their occu- 
pancy factor and their temperature factor. If anomalous 
diffraction is included, then the anomalous scattering 
factors ~'f' and ~f" can also be refined for every type of 
anomalous scatterer. Furthermore, since several data sets 
need to be scaled together prior to any phase determi- 
nation, additional refinement of the scaling parameters 
may be needed. 

The 'observed' quantities (Fph(C~max)) in (12) are, in 
fact, dependent on the parameters. Thus, equation (12) 
can be rewritten as 

where 

H N 

z = E wh,(o - ,hi) 2, (13) 
h i 

dl)hi -- Fphi(Olmax)- (Fph(0 /max) ) .  (14) 



JORDI BELLA AND MICHAEL G. ROSSMANN 163 

Equation (13) becomes a normal residual function in 
which every known value is zero, and the absolute 
minimum in absence of error will be reached when all 
terms ((Fph) -Fphi) 2 are also zero. In practice that does 
not happen, and a normal least-squares procedure is 
defined, where the normal equations are, 

I1 N J 
Z ~ i  ZWhiO(1)hi~l~i)hiz~k~k 

h " j 0% ~¢k 
tI N (15) 

: __ Z Z W h i l ~  hi "O(1) hi 
h i OCj 

There are as many equations (15) as there are refinable 
parameters ~'j ( j  = 1,...,J). The solutions of the system of 
equations are the parameter shifts A~" k. The derivatives of 
~hi can be easily derived from equations (6) and (14) as, 

O*h~i -- OF"i [ OFh I 
(16) 0 -j \ % / 

where 

(8Fhl 1~-~ oFhi (17) 
i = , ocj  

Nh is the overall number of derivative circles in which the 
phase determination of the hth reflection is based, as 
some of the observations from different derivatives, 
wavelengths or Friedel opposites may not be usable for 
that particular reflection. 

The Cullis et al. (1961) phasing method has been 
implemented into the heavy-atom phasing and refinement 
program HA TOMLSQ (Rossmann, 1967), which has 
been extensively modified to handle multiwavelength 
data. The new program, WHALESQ (Wavelength-Heavy- 
Atom-LEast-SQuares) has a least-squares procedure as 
described above. The program can also apply non-crys- 
tallographic symmetry constraints where appropriate to 
the refinement of the heavy-atom parameters (Rossmann, 
1976). 

Several numerical tests have been run to verify that the 
program produces reliable phase information from data 
with simulated measurement errors and moderate non- 
isomorphism effects. In all these tests, individual and 
joined probability distributions have been calculated 
using equations (7) and (8), where the standard errors E~ 
have been estimated in a simple way as the root-mean- 
square of ~'hi, calculated in resolution shells from all the 
reflections from the same compound and wavelength. 
Amplitudes and phases for the 'best' electron-density 
map have been calculated for each reflection at the cen- 
troid of the probability distribution, 

J0 z" P(c0 exp(io0dc~ Fbest-- (Fp) f2n P(ot)doe = (Fp)mexp(i°tbest)' 
d r /  

(18) 

where m is usually referred to as 'figure of merit'. 
The program also calculates two additional quantities 

analogous to those used in lack-of-closure-based MIR 
methods, 

and 

I~ H 2 1 1/2 
R,,,), (Cullis) . . . . . .  , (19) 

~-'~r(FpHhm~,r --(Fph)) 

K,,~,(Phasing power) = \ h  ~ q~h,,;,T) 

1/2 
(20) 

Sums in equations (19) and (20) are extended to all the 
reflections, overall and in resolution shells. Both R m )  " and 
/Crux are calculated for every compound and every 
wavelength used in the phase determination, and can be 
useful to monitor the quality of the heavy-atom con- 
tribution. Typically, bad derivatives show values of R,,,~, 
around 1.0 and/C,,,)~ close to zero. 

Despite the simplicity in the error treatment, WHA- 
LESQ has produced satisfactory results on several 
numerical tests as described below, with average values 
of the figures of merit in pretty good agreement with the 
cosines of the mean phase errors. The phasing method is 
general enough to allow for several improvements, like 
more accurate treatments of the propagation of errors into 
the protein phase angles, as described by Terwilliger & 
Eisenberg (1987), or implementation of maximum-like- 
lihood algorithms into the refinement of the heavy-atom 
parameters (Otwinowski, 1991). These and other 
improvements will be introduced in future versions of the 
program. The source code for the program is available 
from the authors. 

4. Numerical  tests 

We have analyzed the performance of the phasing algo- 
rithm described above in four numerical tests, repre- 
senting different experimental situations. The first test, a 
single MAD experiment, is intended to assess the accu- 
racy of the phases obtained with this method and to 
compare them with those obtained using widely used 
phasing programs like MLPHARE (Otwinowski, 1991). 
The second test shows how the presence of two types of 
anomalous scatterers in the same crystal can be exploited 
for phasing purposes in a very straightforward way. The 
third test explores the possibility of using MAD data 
from two different crystals, each one with a different type 
of anomalous scatterer, to improve the phases with 
respect to those obtained from each MAD data set 
separately. The impact of non-isomorphism between the 
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Table 1. Anomalous scattering factors and diffraction ratios 

Diffraction ratios are calculated as follows. Diagonal terms: Y~h~ [F(hkl) - F(hkl)[/Y~h~ (F(hkl)) (centric data in parentheses). Off-diagonal terms: 
~_,h~ I~" F(hkl) - ~J F(hkl) l/ Y]hkt (F(hkl)). 

(a) Anomalous scattering factors for the Fe K absorption edge, and diffraction ratios from error-free data used in the first numerical test (resolution 
range 25.0-2.5 A) 

Scattering factors (e-) Diffraction ratios (%) 

Xj (A) 

~.~ (A) f '  f "  1.8000 1.7402 1.7380 1.6500 1.5000 

1.8000 -3.17 0.50 0.3 2.3 1.9 1.0 1.2 
1.7402 -8 .97 2.48 1.5 1.3 2.6 3.0 
1.7380 -6 .49 5.19 3.1 1.7 2.2 
1.6500 -2 .18 3.56 2.1 0.5 
1.5000 -0.95 3.05 1.8 

(b) Diffraction ratios (%) from data with simulated error (resolution range 25.0-3.0 A) 

xj (A) 

X, (A) 1.8000 1.7402 1.7380 1.6500 1.5000 

1.8000 3.8 (3.5) 4.4 4.2 3.9 4.0 
1.7402 4.1 (3.5) 4.0 4.5 4.7 
1.7380 4.9 (3.4) 4.2 4.3 
1.6500 4.4 (3.6) 3.8 
1.5000 4.2 (3.3) 

two crystals is analyzed there. The fourth test explores 
the possibility of phasing using multiple data sets origi- 
nating from different derivatives and wavelengths in a 
combined MAD and MIR approach. 

For all these tests, we have calculated different sets of 
structure factors from a known protein structure with 
known heavy-atom positions. We have introduced non- 
isomorphous errors when combining simulated data from 
different crystals. To make the tests more realistic, we 
have simulated measurement errors for the structure- 
factor amplitudes as a function of resolution (Appendix 
C). In multiple crystal tests, these measurement errors 
have been introduced on top of the non-isomorphous 
errors. The protein model is the crystal structure of the 
homotetrameric hemoglobin from Urechis caupo 
(Kolatkar, Ernst et al., 1992). This hemoglobin contains 
141 amino-acid residues plus one heme group per 
monomer, and the crystal contains two monomers per 
asymmetric unit. The structure was solved initially to 5 A 
using MIR methods (Kolatkar, Meador, Stanfield & 
Hackert, 1988), and its phases were refined to 2.5 A 
using MAD data (Kolatkar, Ernst et al., 1992). Atomic 
coordinates of the structure are available from the Protein 
Data Bank (entry code I lTH). 

4.1. First numerical test." a single MAD experiment 

Atomic coordinates from protein and heme groups 
were used in the calculation of structure-factor ampli- 
tudes. Anomalous dispersion effects were introduced for 
the Fe atoms at five diffraction wavelengths around the Fe 
K absorption edge at 1.740 A. The values o f f '  and f "  at 

each wavelength were obtained from Hendrickson et al. 
(1988). Table 1 (a) shows the calculated anomalous signal 
for the five simulated wavelengths used in this test, 
assuming an error-free situation. The diffraction ratios for 
the data with simulated error (Table l b) are larger than 
the calculated anomalous signal, and in the same range as 
those observed in the real experiments reported by 
Hendrickson et al. (1988) and Kolatkar, Ernst et al. 
(1992). Diagonal terms in parentheses relate to the dif- 
ferences between Friedel mates of centric reflections as a 
consequence of the simulated error, and give a measure 
of the noise level introduced in the data. 

Data with simulated error were used in WHALESQ to 
calculate phases and amplitudes for the native structure 
factors Fp. Each reflection was represented by ten circles, 
two for each wavelength, with a phase angle interval of 
5 °. For centric reflections, the structure-factor amplitudes 
of any two Friedel mates are the same (radii of the cir- 
cles), but the centers of the circles still are different for 
each Friedel mate. The R factor in Table 2 is an index of 
the agreement between the m e a n  (Fp) of the estimated 
Fai amplitudes and the error-free Fp values. In this 
experiment, the native structure included all protein plus 
non-metal heme atoms, whereas the two Fe sites were 
considered heavy atoms. It can be seen that the estimates 
of Fp  are  very good. The mean phase error, Aot, was 
calculated from the differences between the centroid 
phases and the actual phases of the parent structure 
factors. Table 2 and Fig. 5 compare the mean phase error 
with the arc cosine o f ~ ,  the mean figure of merit, which 
should be the expected value of the cosine of the mean 
phase error. The ~ values - normally available in an 
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Table 2. Phasing statistics from the first numerical test, 
using amplitudes greater than la(F) and within the 

resolution range 25.0-3.0 A 

For comparison, statistics are shown from two MLPHARE calculations, 
each using a different wavelength as 'native' data set. 

Overall Centric Acentric 

WHALESQ 
R factorl 0.030 0.018 0.033 
Aa:~ 41.2 31.3 42.9 
cos- t~§ 44.9 44.1 45.1 
Number of reflections 6622 965 5657 

MLPHARE 
~.5 as native 

Aot 44.6 34.2 46.4 
cos- l~  84.1 79.8 84.8 
Number of reflections 6594 953 5641 

~. 1 as native 
Aot 44.3 37.1 45.5 
cos- i~  85.8 84.3 86.0 
Number of reflections 6591 950 5641 

statistics are based on the reflections surviving the 1 a(F) 
cutoff. For WHALESQ, those include any reflection for 
which there are at least any two observations (circles) 
greater than l a(F). For MLPHARE, reflections are 
included only when 'native' and at least one more 
wavelength observations are greater than l a(F). 

4.2. Second numerical test: a double MAD experiment 
with perfect isomorphism 

In this numerical test, two different types of anomalous 
scatterers are present simultaneously in the same crystal. 
The heavy-atom derivatives of the hemoglobin crystals 
(Kolatkar, Ernst et al., 1992) are real-life examples for 
this case. A selenomethionyl-protein crystal soaked in 
one heavy-atom solution, or an unmodified protein 
crystal soaked in two different heavy-atom solutions, 

f R factor = )--~hkt [(Fp)--Fpl/~_,hklFp, where Fp is the error-free 
native structure factor and (Fp) is the mean native structure factor as 
defined in the text. ~: Aot is the mean phase error between the 
estimated phase and its true value. § c o s - ~  is the cosine of the 
mean figure of merit. 

actual experiment - agree reasonably well with Aot - 
available in this test but normally unknown in an actual 
experiment. 

For comparison, phases were also calculated with 
MLPHARE using the MIR analysis of the dispersive 
differences (Ramakrishnan & Biou, 1997). Data selection 
criteria were the same for both programs. The data from 
the remote wavelength ()~5) were used as 'native' in first 
instance, and then phases were redetermined using the 
'pre-edge' wavelength ~.1 as native (see Hendrickson et 
al., 1988, for details about the actual positioning of the 
different wavelengths in the absorption spectrum curve 
around the Fe K edge). Overall, MLPHARE phases 
between 25 and 3/~ were slightly worse than those cal- 
culated from WHALESQ, independently of the 'native' 
wavelength choice (Table 2). The MLPHARE figures of 
merit are seriously underestimated, overall and by reso- 
lution ranges (Fig. 5), and seem to depend on which 
wavelength is used as a 'native'. 

The differences in the number of reflections used for 
phasing statistics in Table 2 arise from the l a(F) cutoff 
applied. This highlights another potential disadvantage of 
'native'-based MAD phasing methods. For a given 
reflection, the structure-factor amplitude at the wave- 
length chosen as 'native' can be unobserved or rejected 
on grounds of a-based cutoffs. This may result in 
reflections being inaccurately phased or not phased at all. 
Instead, WHALESQ can reject a poor observation by 
applying a-cutoffs, and still determine the phase as 
accurately as the remaining well determined observations 
allow. In this numerical test, the total number of unique 
reflections between 25.0 and 3.0 A is 6660. Table 2 

p H  i 

[ / 

t i J • 

FH2 

F~ 

Fptt2 

Fig. 1. Argand diagram of the determination of unknown phases from a 
protein crystal structure using multiple isomorphous derivatives 
(Harker, 1956). Throughout this paper we will adopt a different 
convention from what is normally used. In this convention, protein 
structure factors Fp (red) are vectors that radiate from the origin of 
coordinates, with amplitude Fp and phase or; heavy-atom structure 
factors FHi (blue for i = 1, black for i = 2) are represented by vectors 
of amplitudes FHi and phases ~Pi, that start at (--FH,COS~, --FH;Sin~;) 
and end at the origin of coordinates; derivative structure factors are 
represented by vectors beginning at the origin of their respective 
heavy-atom vectors and finishing at the end of the protein structure 
factor vectors, such that FpH i = FHi + Fp. Possible solutions for the 
protein complex structure factor Fpi are given by the intersections 
between the circle of radius Fp centered at the origin and the 
derivative circles of radii Fpn~ centered at their respective FHi origins. 
In absence of any error, all circles should intersect at only one point, 
which would give the correct solution for Fp. In practice, every 
derivative circle may intersect with the native circle in a different 
position or may not even intersect at all. 



166 PHASING ALGORITHM FOR MAD AND MIR 

would also fit into this category. The experiment simu- 
lated here consisted of the measurement of anomalous 
diffraction data at the absorption edge of each anomalous 
scatterer. In this simulation, we chose a platinum deri- 
vative from Kolatkar, Ernst et al. (1992) (third derivative 
on Table 1 from that reference), and kept the occupancies 
of the two Pt sites at the levels experimentally deter- 
mined: 0.14 and 0.17, respectively. Structure-factor 
amplitudes were calculated at six different wavelengths, 
three around the Fe K edge and three around the Pt Lm 
edge at 1.072 A. Thef '  and f "  values for platinum at the 
Lm edge were estimated from X-ray absorption spectra 
experimentally measured (unpublished data). Anomalous 
scattering factors for Pt at the Fe K edge and for Fe at the 

Pt LII I edge were calculated theoretically (Cromer, 1983). 
The diffraction ratios show that the signal from the Pt LII I 

edge data is quite weak (Table 3). 
Phases were determined using WHALESQ in a two- 

derivative approach. The first 'derivative' set consisted of 
the simulated data for the three wavelengths of the Fe K 
edge. The second 'derivative' consisted of the simulated 
data for the three wavelengths of the Pt LII I edge. Each 
'derivative' contained two Fe and two Pt atoms, and their 
anomalous scattering factors corresponded to the parti- 
cular wavelength in use. Thus, a total of 12 circles were 
used for phase determination. Overall, inclusion of 
anomalous dispersion data from a low-occupancy sec- 
ondary anomalous scatterer (Pt) improved the accuracy 
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Fig. 2. The protein structure factor Fp 
is calculated from each derivative 
at each sampled value of the phase 
angle ot (every 20 ° in this exam- 
ple). The most probable phase 
angle is that which gives the 
minimum spread (variance) 
between the calculated amplitudes 
Fpi. The enlarged area shows the 
way in which the different Fpi 
values are calculated at the inter- 
sections between the respective 
circles and straight lines with slope 
tanot. Different Fpi solutions are 
shown as triangles, squares or 
diamonds, respectively. The native 
circle is treated as another deriva- 
tive (Fpo in this figure) that has a 
null heavy-atom vector. The best 
estimate for the protein amplitude 
is calculated as the average (Fp) 
between all the calculated Fpi. 
Thus, protein phases and ampli- 
tudes can be straightforwardly 
determined from any three deriva- 
tive circles, even in the absence of 
any protein native data. The color 
scheme for native and derivatives 
is the same as in Fig. 1. 
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Table 3. Anomalous scattering factors and diffraction ratios for the Fe K and Pt LII I absorption edge data used in the 
second numerical test 

Resolution range: 25.0-3.0 A. Definitions as in Table 1. 

Scattering factors (e-) Diffraction ratios (%) 
z+ (A) 

Fe Pt Fe Fe Fe Pt Pt Pt 

)~i (A) f '  f "  f '  f "  1.7420 1.7380 1.5000 1.0720 1.0714 0.9800 

1.7402 -8 .97 2.48 -4 .77 8.38 4.1 (3.4) 4.0 4.8 5.1 5.0 5.1 
1.7380 -6 .49 5.19 -4.77 8.38 5.0 (3.6) 4.4 4.8 4.7 4.7 
1.5000 -0.95 3.07 -5 .39 6.64 4.3 (3.4) 4.1 4.0 3.9 

1.0720 0.18 1.75 -25.12 10.20 4.1 (3.5) 3.9 3.9 

1.0714 0.18 1.75 -17.56 14.26 4.2 (3.4) 3.9 

0.9800 0.25 1.50 -8 .26 8.74 4.0 (3.4) 

Table 4. Phasing statistics from the second numerical test 

Phases calculated with WHALESQ using amplitudes greater than let(F) 
and within the resolution range 25.0-3.0 A. Definitions as in Table 2. 

Overall Centric Acentric 

R factor 0.033 0.018 0.036 
Ac~ 33.6 19.9 35.9 
c o s - ~  39.0 32.5 40.0 
Number of  reflections 6628 970 5658 

and collect anomalous data from the same crystal at two 
different absorption edges, ensuring perfect isomorph- 
ism. However, the arbitrary choice of hand used to define 
the anomalous scatterer constellation must be reconciled 
with the absolute (right) hand chosen to index the 
reflections (Blow & Rossmann, 1961). 

of the phases obtained from the high-occupancy main 
anomalous scatterer (Fe) (Table 4). 

In practice, it is not uncommon to prepare derivatives 
of protein crystals already containing one potential 
anomalous scatterer. Thus, in theory it would be possible 
to perform real experiments like the one described above 

(~) 
P 

< 

...... FpH (g  + O0 ............... 

Fp (x  + 5 )  

Fig. 3. Origin of the double solution of equation (5) for a particular 
derivative. The positive solution in this case corresponds to the 
calculated Fp when the phase angle is a. The negative solution 
corresponds to minus the calculated Fp when the phase angle is 
Jr + or. As in Fig. 1, native is shown in red. 

Fig. 4. Treatment of MAD data by the method described in this paper. 
The size of  the anomalous effects has been exaggerated for clarity. 
The contribution of every kind of anomalous scatterer is calculated 
independently for every ith compound, )~ wavelength and Friedel 
mate, as if it were an independent derivative. Circles of radii ~F~(4-) 
represent experimentally observed amplitudes. Dashed circles of 
radii °Fi correspond to derivative structure-factor amplitudes in 
absence of anomalous scattering effects. No native circle is present in 
this example. The common intersection of all circles gives the phase 
and amplitude of the protein structure factor, Fp, which includes the 
contribution of all atoms in the asymmetric unit except the 
anomalous scatterers. In this way, several MAD data sets can be 
reduced to the same native protein structure factor. The color scheme 
is as in Fig. 1. 
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Table 5. Anomalous scattering factors and diffraction rations (%)for the Pt Lm and Au Lm absorption edge data used 
in the third numerical test 

Resolution range: 25.0-3.5 A. Definitions as in Table 1. 

Scattering factors (e-) Diffraction ratios (%) 

Pt Au Pt Pt Pt Au Au Au 

~., (A) f '  f "  f '  f"  1.0720 1.0714 0.9800 1.0402 1.0390 0.9500 

1.0720 -25.12 10.20 4.0 (3.6) 3.7 4.0 11.7 11.9 12.2 

1.0714 -17.57 14.26 4.2 (3.4) 3.8 12.0 12.1 12.4 

0.9800 -8.26 8.74 3.9 (3.4) 12.3 12.5 12.8 

1.0402 -25.04 10.20 3.8 (3.3) 3.8 3.9 

1.0390 -16.43 14.25 4.1 (3.7) 3.8 

0.9500 -8.17 8.71 3.9 (3.6) 

4.3. Third numerical test." a two-crystal, two-MAD 
experiment 

In this test, we explored the possibilities of combining 
MAD data from two different crystals, each having a 
different anomalous scattering species. The accuracy of 
the combined phase determination will depend heavily 
on the degree of isomorphism between the two crystals. 
Two heavy-atom derivatives were chosen for this simu- 
lation, one containing two Pt sites and the other con- 
taining a single Au site (third and fitth derivatives in 
Table 1 from Kolatkar, Ernst et al., 1992). To enhance the 
anomalous signal, occupancies of these sites were 
increased to 0.30, 0.30 and 0.33, respectively. Data were 
simulated at the Pt Lm and Au Lm absorption edges, 
respectively, and Fe atoms were considered 'non-anom- 
alous' in all the calculations. Non-isomorphism between 
the two derivatives was modeled by changing the unit- 
cell dimensions of the Au derivative (a was increased by 
0.2%, b and c were decreased by 0.2%); by translating 
each molecule in the reference asymmetric unit by 
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Fig. 5. Variation with resolution of the cosine of the mean phase error, 
cos(Ate), and average figure of merit, ~, in the first numerical test. 
Phases were calculated with WHALESQ (diamonds) and MLPHARE 
(triangles). ~.5 or k I indicate which wavelength was used as native in 
MLPHARE phase determinations. 

0.10 A in x, -0.05 A iny, -0 .10 A in z; and by rotating 
each molecule by 0.5 ° around the z axis. The size of the 
non-isomorphous errors can be estimated from the R 
factors between the two crystals (Table 5). Anomalous 
scattering factors for Pt and Au were theoretically 
determined or, when possible, estimated from actual 
X-ray absorption spectra. 

The phase improvement obtained by combining two 
MAD data sets was evaluated by calculating phases with 
WHALESQ using (a) data from the Pt derivative alone 
(six circles), (b) data from the Au derivative alone (six 
circles), and (c) data from both derivatives together (12 
circles). Phasing statistics for the three cases at different 
resolution intervals are shown in Table 6. At low reso- 
lution, there was a significant improvement in phasing 
accuracy when combining the Pt and Au data, compared 
with the phases obtained by using each of them sepa- 
rately. At higher resolution, the overall improvement 
decreased, and when extended to 3.5 A resolution, phases 
calculated using both derivatives were worse than those 
based on the Pt derivative alone. The decrease of phase 
improvement with resolution (Table 6 and Fig. 6) is the 
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Resolut0o~ limits (A) 

Fig. 6. Variation with resolution of the cosine of the mean phase error, 
cos (Aot), for the third numerical test, using the Pt Lm data alone 
(squares), the Au LIU data alone (triangles), or both Pt Lm and Au Lm 
data sets combined (diamonds). 
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Table 6. Phasing statistics from the third numerical test 

Phases calculated with WHALESQ using amplitudes greater than la(F) and within the resolution range 25.0-3.5 A. Definitions as in Table 2. 

Resolution (A) 25.0-5.5 5.5-4.2 4.2-3.5 

Overall Centric Acentric Overall Centric Acentric Overall Centric Acentric 
R factor 

Pt only 0.036 0.029 0.038 0.039 0.034 0.040 0.047 0.040 0.048 
Au only 0.034 0.029 0.036 0.034 0.034 0.034 0.039 0.039 0.038 
Pt + Au 0.041 0.043 0.040 0.062 0.086 0.057 0.074 0.084 0.073 

Aot 
Pt only 49.7 45.8 50.9 57.3 56.5 57.4 53.1 47.4 53.9 
Au only 51.8 50.3 52.2 60.6 56.9 61.3 62.7 62.5 62.7 
Pt + Au 41.2 36.5 42.7 57.4 56.5 57.5 58.8 54.4 59.4 

COS- Im 
Pt only 50.1 54.0 48.8 56.8 60.8 56.0 54.5 57.9 54.0 
Au only 51.2 52.8 50.7 61.4 66.4 60.4 64.2 71.0 63.2 
Pt + Au 33.5 25.2 35.9 42.0 32.9 43.6 40.4 34.2 41.2 

Number of reflections 
Pt only 1119 271 848 1370 220 1150 1721 207 1514 
Au only 1110 265 845 1362 215 1147 1714 206 1508 
Pt + Au 1124 276 848 1374 223 1151 1724 210 1514 

consequence of the increasing importance of non-iso- 
morphous errors with resolution. 

Overall, figures of merit matched reasonably well with 
the accuracy of the phases when single derivatives were 
considered for phasing. When phasing with two deriva- 
tives, however, figures of merit were overestimated (Table 
6). The increase in the number of circles introduces a 
sharpening in the probability distribution and, hence, 
improves the calculated m. However, because of non- 
isomorphous errors, this increase in the number of circles 
does not correspond with the actual increase in phase 
accuracy, and as a result the calculated figures of merit 
are higher than they should be. This discrepancy 
becomes worse as the resolution of the data increases and 
the non-isomorphous errors become more important. The 
Fp amplitudes are still estimated reasonably well, 
although it seems that combining derivatives results in a 
small increase in the mean amplitude errors. 

Calculation of the phasing power for each derivative as 
a function of resolution gave some indication of whether 
the phase accuracy was improved by combination of the 
two MAD data sets. At a resolution higher than 4.6 A, 
the phasing power of the Au data dropped to 1.0-1.2 for 
the three wavelengths when used in combination with the 
Pt data, suggesting that their phasing contribution was 
too small compared to the increasing effect of non-iso- 
morphous errors. 

Combining real experimental MAD data from two or 
more different crystals can be beneficial in those cases 
where the phases obtained from every MAD experiment 
independently are poor, so that the impact of non-iso- 
morphism errors is compensated by the phase improve- 
ment upon combination. If one of the MAD data sets is 
able to produce accurate phases on its own, then the 
introduction of a second MAD data set will only improve 
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Fig. 7. Examples of special cases when FH is larger than FpH. At the 
phase angle oq, the radius vector intersects the circle of radius FpH 
(blue) in two points, giving two possible solutions for the protein 
structure factor: Fpl(Oq) (red) and Fp2(ot2) (green). The same will be 
true for any u angle between two limiting values Oqow and 0/high, 
defined by the two tangent lines from the coordinate origin to the 
circle of radius FpH. At the phase angle t~2, there is no intersection 
between the radius vector and the circle of radius FpH. An 
approximate solution for the protein structure factor can be obtained 
as the vector Fp(ot2) (gold), which is drawn from the origin of 
coordinates to the point where the radius vector intercepts the 
perpendicular drawn from the center of the derivative circle. 



170 PHASING ALGORITHM FOR MAD AND MIR 

the phases if  there is good isomorphism between the two 
crystals. Comparison of  R(Cullis), phasing power/C, and 
figures of  merit at different resolution shells and using 
various combinations of  data sets should generally show 
the resolution limits of  useful combination of  phase 
information. 

4.4. Fourth numerical test: MAD and MIR phase 
combination 

In this test, we combined MIR and MAD data sets into 
the same Harker diagram. The simulated experimental 
data consisted of  two collections of  structure-factor data 
sets. The first set contained data from a native crystal and 
from four low-occupancy derivatives. This set yielded 
MIR phases of  low quality. The second set consisted of  
MAD data at three wavelengths from a fifth derivative, 
and was simulated so that the combination of  measure- 
ment errors and low occupancy of  the only anomalous 
scatterer also produced poor phases when used alone. 

All the derivative parameters were taken from Table 1 
in Kolatkar, Ernst et al. (1992). The MIR data included a 
native, designated as Nat; two platinum derivatives, Pt(1) 
and Pt(2); and two mercury derivatives, Hg(1) and Hg(2), 
with heavy-atom occupancies and coordinates taken from 
the original reference. The MAD data, Au (3X), was 
simulated for the gold derivative at three wavelengths 
around the Au LIII edge. The occupancy, atomic coordi- 
nates, wavelengths and anomalous structure factors for 
this derivative were the same as used in the third 
numerical test (Table 5). All crystals were modeled with 

Table 7. R factors (%) between different derivatives used 
in the fourth numerical test 

Values in parentheses correspond to noise-free data. Resolution range: 
25.0-3.5 A. Rij = ~hU IFi(hkl) -Fj(hkl)l/Y~hu(F(hkl)). 

Native Hg (1) Hg (2) Pt (1) Pt (2) 

Au (;v2) 10.9 9.9 16.6 9.4 12.0 
(10.5) (9.1) (16.3) (8.6) (11.3) 

Native 16.5 15.2 15.0 7.2 
(16.1) (14 .7)  (14.6) (6.2) 

Hg (1) 21.7 7.7 17.7 
(21.4) (6.7) (17.3) 

ng (2) 21.6 15.3 
(21.2) (14.8) 

Pt (1) 15.7 
(15.3) 

some degree of non-isomorphism, in a similar way to that 
described for the third numerical test, and then the 
resulting structure-factor amplitudes were modified with 
a simulated measurement error. R factors between the 
different data sets, with or without simulated noise, give 
an idea of  the effect of  the different errors (Table 7). 

The MIR phases from the first set of  data (native, 
platinum and mercury derivatives) were calculated using 
WHALESQ, with a mean phase error of 61 ° for data 
between 25.0 and 3.5 A resolution. The overall figure of  
merit calculated with WHALESQ was 0.428, which 
agreed well with the mean phase error (cos- l~)  = 65 °. 
For comparison, MLPHARE was used to calculate phases 
from exactly the same data. The mean phase error was 
62 °, with an overall figure of  merit of 0.243 ( cos - l~  = 
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Fig. 8. Geometric relationships between the different complex structure factors resulting from a derivative with anomalous scatterers (left). Vectors 
in red and black are obtained exclusively from normal diffraction effects and are independent of the wavelength. Vectors in blue are wavelength- 
dependent and result from anomalous diffraction effects, xf (green) is the anomalous scattering vector of real component xf,/of and imaginary 
component xf,,/of (see text). Rotation of the complex plane by minus the phase of °Fn results in this vector being aligned with the origin of the 
phase angles (right). 
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76~). Again, WHALESQ phases were on average a little 
bit better, and the calculated figures of merit were much 
closer to the cosine of the mean phase error. It appears 
that MLPHARE's figures of merit are too pessimistic. 

WHALESQ phases calculated using only the three Au 
(3X) data sets, in a single MAD experiment, were also 
poor, with a 6ff mean phase error. Again, the calculated 
figure-of-merit calculation, 0.505, agreed with the cal- 
culated phase error ( c o s - ~  = 60°). 

Table 8 shows how the phase accuracy can be 
increased by combination of different subsets of the data 
described above. The biggest improvement came from 
combining all the data in the phase determination [MIR + 
Au (3X)], with a mean phase error of 40 ~ and calculated 
figure of merit of 0.727 (cos-aN = 4Y). Several inter- 
mediate tests were calculated in which the MAD data 
were combined with different derivatives with various 
degrees of isomorphism (Table 8). For example, the 
combination of the three Au (3X) data sets with just one 
platinum derivative (one extra circle) produced a clear 
improvement in the phase accuracy, which was bigger 
with the more isomorphous Pt(1) data set than with the 
less isomorphous Pt(2) data set. On the other hand, 
combination of the MAD Au (3X) data with the least 
isomorphous derivative, Hg(2), actually decreased the 
phase accuracy. 

Introduction of the native data into the phase deter- 
mination, in what would be like a MAD + SIR combi- 
nation, improved the phase accuracy both in the high- 
isomorphous case [Aug (3,k), Pt(1) and Nat] and in the 
low-isomorphous case [Au (3X), Hg(2) and Nat]. How- 
ever, in this latest case the MAD Au (3X) data still did 
better on their own. Combination of the two least iso- 
morphous derivatives [Pt(2) and Hg(2)] with the Au (3X) 
data sets produced better phases than the MAD phases 
alone, but again the Hg(2) data did more harm than good. 
Phases were better if only the Pt(2) data were combined 
with the MAD Au (3X) data. 

Inspection of the phasing power for the different 
derivatives could help to identify Hg(2) as a potentially 
bad derivative. KS[Pt(1)] for example, ranged from 0.8 to 
1.6 on the different tests, KS[Pt(2)] was 0.6-0.7, KS[Hg(1)] 
varied from 0.4 to 0.7, and KS[Hg(2)] was always below 
0.3. 

5. Conclusions 

The procedure described here avoids approximations and 
treats all data equally. This allows for the simultaneous 
phasing and refinement of MAD data from different 
anomalous scatterers. Numerical tests verify the proce- 
dure and show the results on combining phase informa- 
tion from multiple heavy-atom, anomalously diffracting, 
isomorphous derivatives. Particularly useful is the pos- 
sibility of combining MIR and MAD data when the 
MAD signal is weak and isomorphism is poor. The two 

Table 8. Mean phase error (~) from different combina- 
tions of  data used in the fourth numerical test 

MIR: all single-wavelength derivatives in Table 7 plus the native; Au 
(3X): three-wavelength Au data set; Hg(l), Hg(2), Pt(1) and Pt(2): single 
derivatives; Nat: native data. Only amplitudes greater than la(F) have 
been used. Resolution range: 25.0-3.5 A. Definitions as in Table 2. 

A ~  COS- 1 

MIR 60.8 64.7 
Au (3)0 60.4 59.7 
MIR + Au (3X) 40.0 43.4 
Au (3X) + Pt(2) 55.1 51.3 
Au (3X) + Pt(1) 49.4 46.0 
Au (3X) + Pt(1) + Hg(1) 46.5 42.3 
Au (3X) + Pt(1) + Nat 44.3 47.2 
Au (3X) + Hg(2) 63.3 57.0 
Au (3)0 + Hg(2) + Nat 61.2 52.5 
Au (3;~) + Hg(2) + Pt(2) 58.4 50.9 

indices R(Cullis) and KS(phasing power) have been found 
to be useful to identify bad derivatives or resolution 
ranges in which poor isomorphism is deleterious rather 
than helpful. This method is currently being applied in 
our laboratory to the structure determination of inter- 
cellular adhesion molecule-1. 

APPENDIX A 
Special cases 

Special cases occur when solving equation (5): the two 
solutions can be of the same sign, or the discriminant can 
be negative so that there is no solution at all. These 
special cases result from the amplitude of the heavy-atom 
vector, ?-'Hi, being larger than the amplitude of its cor- 
responding derivative structure factor, FpHg (Fig. 7). 

If the discriminant is negative, that is 
F~ti - F~ sin2(~i - or) < 0, then the following approx- 
imation is used (Cullis et al., 1961), 

Fp/(ot) = -Fn i  cos(O i - oe), 

which is represented in geometrical form in Fig. 7. 
Cases with two positive solutions are solved in an 

iterative way. First, the most positive solution is chosen 
and an initial (Fp(c0) is calculated. Subsequently, the 
ambiguity between the two solutions is solved by 
choosing the one closest to the previous (Fp(ot)), and a 
new average is calculated. This procedure is repeated 
until convergence is achieved. If a phase angle c~ results 
in an equation (5) with two negative solutions, the angle 
rr + c~ will produce two positive solutions. 

APPENDIX B 
Graphical solution of the Karle equations 

The Karle equations can be derived as a special case of 
the formalism discussed in this paper when there is only 
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one derivative with anomalous data measured at multiple 
wavelengths. For simplicity, all anomalous scatterers will 
be considered from the same type. For a given Friedel 
pair we have, 

~'Fprt(+ ) = Fp + XF H 

-" Fp + °F H (1 + 

= 0FpH n t- °F H )'f, 

~f' i z f " ]  (21) 
of / 

and 

~'FpH(-- ) -~- Fp n t- ;'F[I = 0FpH + °F H xf*, (22) 

where °Fp,, = Fp + °F,, and xf = (x f , /o f )+  i(xf,,/of), 
(Fig. 8). 

Fp is the protein structure factor, XFH is the overall 
diffraction contribution from the heavy-atom constella- 
tion at wavelength ~., °F H is the normal diffraction con- 
tribution from the heavy atoms, °FpI I is the normal 
diffraction contribution from protein and heavy atoms, 
and XFpH(+) are the overall structure factors whose 

~. * ~.f* amplitudes are experimentally measured. F H and are 
complex conjugates of XFH and ;'f. 

Now, we rotate the complex plane by multiplying both 
sides of the equation (21) by exp(--i00H), where °0H is 
the phase of °FH (Fig. 8), 

XFprt(-+- ) exp(--/O0H) -- °Fp H exp(--i00H) 

+ °FH:'f exp(--i00H), 

or, in exponential form 

XFpH(+) exp{i[XCtpH(+) _ 0 OH]} 

= 0Fp H exp[i(0OtpH _ 0 OH)] 
(23) 

+ 0FH [ (Xf') 2 + (Xf")2 1 1/2 
(of)2 exp(iX~) • 

%tpH(+), 0C~pH and x~ are phases of XFprt(+), °FpH and ;~f, 
respectively. Equation (22) is treated in an identical 
manner to obtain an equation (23) for the hkl measure- 
ments, with XFpH(--), xc~pH(-), and -x~ instead of 
~'FpH(+), ZOepH(+), and ~s ~- 

From equation (23) it follows that 

ZF~H(±) =°F~H + (zf,)2 + (zf,,)2 ob_~ H 
(of)2 

+ 2OFpHOF/_/[ (xf,)2+(xf, ,)2]l/2 (24) 
(of)2 

x c o s ( ± ~  + °O.  - °apH). 

Equation (24) is equivalent to equation (1), but with 
three unknowns: °Fpu, °F~l and (°Otprt - 00H). Since there 
are two equations per wavelength, one for each Friedel 
pair, two wavelengths are enough in an error-free situa- 

tion to determine all the parameters. Every observation 
provides a circle of radius XFpH(+) with a heavy-atom 
vector °FHXf or °FHXf*, of variable length and fixed 
phase. The same scale °FH applies to all heavy-atom 
vectors. The solution in an Argand diagram is given by 
the intersection of all circles at the same point. Fig. 9 
shows how to solve graphically the simultaneous equa- 
tions arising from two wavelengths. The phase angle 
(°CtpH -- 00H) is sampled from 0 to 360 °, and °FH is the 
scale factor that multiplies all the heavy-atom vectors. 
Only the correct values for (°C~pH -- 00H) and °FH bring 
the four circles to intersect at one point. This intersection 
gives the correct amplitude °Fp H. 

In practice, more than two wavelengths are needed to 
overcome the experimental errors, and the best estimates 
of °FH, °FpH and (°C~pit - 00H) are obtained by mini- 
mizing the spread of (°FpH) as described in the main text. 

It can be shown that every equation (24) is formally 
equivalent to a Karle equation (9) by substituting into 
(24) the angular relation 

cos( + ~, + ° 0  H - °%H) 

= cos( °ap.  - o Ow) cos(+~x) 

+ sin(°apH -- O1/fH) sin(+~ x) 

to obtain 

ZF~H(±) = °F~H + (xf,)2 + (xf,,)2 °F2 
(of)2 

2~f'o F o F + of pii . cos(Oap. _ o0rt) 

2xf ,, 
+ --wT--~ °FpH°FH sin(0C~pH -- 00t 0. v j  

A P P E N D I X  C 
Error  s imulat ion 

Errors in the structure-factor amplitudes have been 
simulated as follows. First, a given structure-factor 
amplitude is calculated in its exact form Foals. Then, a 
sample of 100 'observed' structure factors is generated 
as, 

Fobs, / -- (AiFcalc + Bi)(1 + Cs 2) i = 1 . . . . .  100, (25) 

where 

and 

A i = 1 + T 1 [ran(i, 1 ) -  ~], 

1 
B, = T2[ran(i, 2) - ~1. 

Measurement errors are simulated via Ai, and are 
proportional to the size of Fca~c; B, simulates background 
fluctuation errors, independent of the size of Fca~c; T~ and 
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T2 are adjustable target parameters that govem the size of 
the introduced errors; and ran(i,1) and ran(i,2) are two 
independent series of randomly generated numbers uni- 
formly distributed between 0 and 1. The (1 + Cs 2) factor 
in (25) introduces a resolution dependence on the errors, 
where s is the length of the reciprocal lattice vector and C 
an adjustable parameter. For the numerical examples used 
in this paper, the typical values of the three adjustable 
parameters have been 0.08-0.16 for T1,200-300 for T2 
and 5 A 2 for C. 

After the sample of 100 'measurements' is generated, 
the 'observed' amplitude used in the numerical tests is 

calculated as the average of a subset of ten observations 
from the population 

(Fobs}= l~Fobs , i  i = n ,  nWlO,  n + 2 0  . . . . .  n + 9 0 ,  
i 

where the first value of the series, n, is chosen randomly 
from 1 to 10. The 'standard deviation' of the 'observed' 
amplitude is determined from the entire population, 

[ 1 loo ql/2 
if(F°bs) = L 1 - ~  '~-'~'(F°bs'i --  Fcalc)2 ] /_--7 

z. ~: 0 

i g / 

i g j ~  

i \ 

\ \ \  

_ 

(a) 

! 

i I IIIIII / 

i \\ ~. 

(b) 

(c) 

Fig. 9. Solving the Karle equations by 
Argand diagrams. The heavy-atom 
vectors are °FriZf and °FHZf* , and 
are represented as ending at the 
origin of coordinates (see caption 
to Fig. 1). The experimentally 
observed amplitudes are repre- 
sented as circles of radii ZFpH(+) 
and ZFpH(-) centered at the ori- 
gins of their respective heavy-atom 
vectors. Three vignettes illustrate 
the effect of  °Fn as scaling factor 
in this two-wavelength example. 
Heavy-atom vectors in (a) are too 
short, and every given pair of 
circles intersects at two different 
points (the two red circles in fact 
do not intersect). Still, by evaluat- 
ing the spread between the differ- 
ent circles at every phase angle, it 
is possible to find an approximate 
solution (°FpH), as shown by the 
dashed vector. Heavy-atom vectors 
in (b) are of the correct size and all 
four circles intersect in a unique 
point corresponding to the correct 
°FpH solution (phase and ampli- 
tude). The correct scale of the 
heavy-atom vectors gives the right 
value for °FH. In (c), heavy-atom 
vectors are too long and there is no 
longer a unique intersection. The 
dashed vector indicates the 
approximate solution obtained at 
the minimum spread of the four 
circles. The approximate solutions 
in both (a) and (c) are close to the 
correct value, which indicates that 
°FH can be refined if its initial 
value is not very far from the 
correct one. The data from the two 
different wavelengths are shown in 
red and blue. 
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